•  

    Les limites de la connaissance 6-8) Conclusion

    la cécité empirique.

     

    aveugle né

     

    le procès Galilée.

     

     

    "La science nous permettra-t-elle un jour de tout savoir? Ne rêve-t-elle pas d'une formule qui explique tout? N'y aurait-il rien qui entrave sa marche triomphale? Le monde deviendra-t-il transparent à l'intelligence humaine? Tout mystère pourra-il être à jamais dissipé?

     

    Hervé Zwirn pense qu'il n'en n'est rien.La science, en même temps qu'elle progresse à pas de géant marque elle même ses limites. C'est ce que montre la découverte des propositions indécidables qui ont suivi le théorème de Gödel. Ou celle des propriétés surprenantes du chaos déterministe. Ou encore les paradoxes de la théorie quantique qui ont opposé Einstein et Bohr  en mettant en cause toute notre manière de penser.

    L'analyse de ces limites que la science découvre à sa propre connaissance conduit à poser une question plus profonde: qu'est ce que le réel?"

     

    Je voudrais ici faire partager ma lecture de Hervé Zwirn sur "les limites de la connaissance".

     

    Exergue:

     "En bref, je défendrai une conception dans laquelle l'esprit ne se contente pas de "copier" un monde qui ne peut être décrit que pas une Seule et Unique Théorie Vraie. Mais je ne prétend que l'esprit invente le monde [...]. L'esprit et le monde construisent conjointement l'esprit et le monde" Putnam (1981)

    "Le sens commun mène la physique. La physique montre la fausseté du sens commun. Donc si le sens commun est vrai, alors il est faux. Donc le sens commun est faux."    Bertrand Russel.

    1) préambule.

    science et vérité.  ubirdt saint-esprit

    Dans le message précédent qui présente les positions et attitudes philosophiques face aux résultats de la physique quantique, nous avons vu qu'aucune ne peut se prévaloir d'être l'unique conception mais chacune peut faire valoir des arguments convaincants en sa faveur. A ce stade, les attentes philosophiques, voire "psychologiques" de chacun diffèrent et ce qui peut sembles convaincant aux uns paraîtra inepte aux autres. Pour aller plus loin, il faut conserver la cohérence de l'argumentation et le consistance de l'analyse. Je partage ici l'avis de Hervé Zwirn dans le refus de deux positions opposées. J'expose la lecture que j'en fait aujourd'hui et qui n'engage que moi.

         a) Celle du réalisme scientifique (traditionnel).

    Il consiste à penser qu'il existe une réalité indépendante dans laquelle l'homme est immergé et qu'elle est correctement et littéralement décrite par la physique. Cette physique n'est pas celle d'aujourd'hui, mais celle d'une hypothétique théorie ultime vers laquelle la science tend asymptotiquement. Réalité indépendante: elle existerait de la même manière et sous forme identique même en l'absence de tout être humain. Exister: le verbe est à prendre ici dans son sens littéral le plus immédiat, identique à celui du langage courant (le papier sur lequel est imprimé ce livre existe). Mais la physique montre que le sens commun a tort de croire que ce papier existe,seules existent vraiment les entités utilisées dans la théorie, par exemple les champs. Donc entre le langage courant et le langage scientifique, le verbe "exister" ne change pas de sens, seules changent les entités qui peuvent prétendre à l'existence. L'homme est un élément de cette réalité dans laquelle il est immergé et qu'il ne perçoit pas directement dans sa globalité. Cette limitation ne concerne que cette perception et n'a aucune influence sur la réalité elle-même. La physique décrit la réalité telle qu'elle est vraiment et les affirmations des théories sont à prendre à la lettre comme le dit Van Fraassen:"...alors il y a réellement des électrons qui se comportent de telle et telle manière."

    Si la réalité ne nous apparaît pas directement en raison de la limitation de nos sens, la physique nous donne les moyens de comprendre l'apparence qu'elle revêt pour nous. Actuellement, cette réalité peut être décrite comme un espace-temps à 10 dimensions dans lequel interagissent des champs de cordes supersymétriques, espace et champ de cordes qui existent en tant que tels. Si nous ne percevons que 4 dimensions dans notre monde perceptible, cela provient de l'enroulement de 6 des 10 dimensions sur une distance de l'ordre de 10puiss-33 cm, "compacification" des dimensions qui rend impossible leur perception directe.

    En conclusion du réalisme scientifique: "même si le contenu des théories change, le principe sous-jacent restera du même type, des objets (abstraits, complexes et non représentables) sont les briques de base à partir desquelles tout ce qui constitue notre environnement habituel est construit. Le réalité est le niveau où vivent ces briques. L'homme est immergé au sein de cette réalité et sa réalité phénoménologique est une représentation, forcément partielle et limitée de cette réalité indépendante. La réalité phénoménale dépend des capacités perceptives humaines mais pas la réalité indépendante dans laquelle l'Homme est immergé et qu'il découvre conceptuellement. Cette réalité indépendante épuise tout."

         b) Celle de l'idéalisme radical.

    "Tout est création de l'homme et rien n'existe en-dehors des phénomènes perceptifs. La "réalité" (au sens du chapitre précédent) n'a aucune existence et n'est qu'une reconstruction pragmatique destinée à organiser nos perceptions." Le solipsisme, qui pose que seul un esprit (le mien) existe et que tout n'est que création de cet esprit, en est la version la plus extrême. 

         c) Objections à l'encontre du réalisme scientifique..

    En raison de la sous-détermination des théories par l'expérience, plusieurs théories ultimes mutuellement incompatibles mais adéquates peuvent être plausibles. Alors, comment soutenir l'existence d'une réalité unique? De plus, le concept de réalité indépendante est mis en difficulté par l'impossibilité de construire une théorie ontologiquement interprétable et il semble impossible de soutenir que les objets des théories sont les constituants d'une réalité ayant une existence autonome et indépendante, même si nous disposions d'une théorie ultime totalement adéquate avec les phénomènes. 

         d) Objections à l'encontre de l'idéalisme radical.

    Il ne se se heurte pas à des objections du même type, en en sens il est non réfutable. Le solipsisme pur et dur (seules mes propres perceptions existent, tout en étant que construction de mon esprit) est logiquement possible. Il n'est pas à rejeter seulement en raison d'objections du genre "si tout n'est qu'invention de mon esprit, pourquoi ne suis-je pas milliardaire?" car rien n'indique en effet que je devrais être capable de contrôler le processus de création, après tout, je ne contrôle pas mes rêves. De plus, si l'esprit est régi par des structures, des phénomènes de limitation analogues à ceux des systèmes formels peuvent survenir pour empêcher toute construction. 

    L'idéalisme non solipsiste se contente de refuser l'existence réalité dont les perceptions seraient l'image. L'intersubjectivité pourrait poser une difficulté à cette position, mais elle pourrait n'être qu'une illusion comme c'est le cas dans le solipsisme convivial. L'argument de la résistance du réel lui non plus n'est pas déterminant, car une construction, ici celle ne notre esprit, est toujours soumise à des contraintes si elle est est régie par des règles. Par contre, une vraie difficulté est de considérer la perception comme antérieure à l'existence. Comment accepter une perception sans existence d'un sujet percevant? Cela est sans doute possible si on admet la pensée comme unique existant, mais est-ce satisfaisant? De plus, on n'est pas plus avancé que dans le cas du solipsisme. 

         e) Position défendue par H. Zwirn, que je partage.

    L'homme  n'est pas créateur du monde, mais il n'est pas un observateur passif. Ains que le dit Putnam en exergue à ce chapitre, "L'esprit et le monde construisent conjointement l'esprit et le monde". C'est une manière de refuser le face de l'Homme et de l'Univers du réalisme traditionnel. 

     

    2)  Rejet des arguments en faveur du réalisme.

     

    Galilée 

         a) arguments en faveur du réalisme métaphysique.

    *L'argument que Hume a appelé "la relation cause-effet": si j'entends des voix dans la pièce voisine, j'en infère que qu'il y a des personnes qui y sont présentes; Si je vois une forme ressemblant à un plateau, j'en infère qu'il y a une table devant moi. On peut y distinguer deux éléments différents. Le premier consiste à inférer d'une perception une autre perception potentielle par un raisonnement contre-factuel: si j'allais dans la pièce voisine, je percevrais des personnes. Il ne concerne que la réalité empirique et relie les perceptions entre elles. La critique de Hume porte sur le fait que ce lien entre les perceptions (le premier élément), ne peut être établi sans postuler la validité du principe d'induction qui nous garantit que s'il s'est révélé exister dans le passé, il existera dans le futur. Or, il est impossible de justifier rationnellement le principe d'inductionLe deuxième consiste à inférer l'existence d'une entité réelle, une table, à partir de la perception qu'on en a. Il concerne la réalité en soi (hypostasier des entités en tant qu'explication des perceptions), et seul ce élément concerne le réalisme métaphysique alors que le premier est plutôt une condition nécessaire à la construction de tout discours empirique. 

    Hume a combattu l'idée qui consiste à considérer que lorsque nous avons la perception visuelle et tactile d'une forme de plateau avec 4 pieds, la meilleure explication possible est l'existence réelle d'une table qui en est la cause, en soulignant que nous n'avons accès qu'à nos perceptions et aucunement à la réalité en soi. L'hypothèse de l'existence réelle d'objets réels extérieurs ne s'impose donc nullement, ce n'est qu'un moyen pragmatique d'organiser nos perceptions. La critique de Hume est fondée et rien n'autorise de manière péremptoire à passer de l'existence de nos perceptions à à celle d'un monde extérieur (la physique quantique confirme ce genre d'objections). La relation cause-effet n'es donc pas un argument pertinent pour justifier la réalité en soi.

     

    *L'intersubjectivité.

    C'est un argument en faveur de l'existence d'objets extérieurs à nous-même, car si comme le suppose l'idéalisme, rien n'existe en dehors de nos esprits, ce dernier est bien en mal d'expliquer pourquoi nous tombons d'accord sur nos perceptions. Si Jean et Marie s'accordent à dire qu'il y a deux verres et une bouteille de vin sur la table, l'explication la plus simple est de considérer qu'il y a réellement deux verres et un bouteille. Cet argument prolonge celui du chapitre précédent et répond à une objection, car si j'ai la perception d'une table, cela ne veut pas dire forcément qu'il y a une table devant moi, je pourrais être victime d'une illusion, la table pourrait n'exister que pour moi. En revanche, si Jean et Marie sont d'accord, la table n'existe pas que pour un seul esprit. Ils pourraient être victimes de la même illusion, mais il serait difficile de soutenir que tous les cas de perceptions communes sont des illusions partagées. 

    L'intersubjectivité semble donc un argument plus solide celui de la relation cause-effet. la mécanique quantique va à l'encontre de cette conclusion. Ce n'est pas parce que Jean et Marie s'accordent sur le fait que le spin suivant une direction est +1/2, qu'il vaut +1/2 avant la mesure. L'explication intuitive que ce résultat préexistait à la perception n'est pas valide. De plus, la mécanique quantique fournit le mécanisme qui explique que tous deux tombent d'accord bien que le résultat ne préexiste pas à leur perception. L'intersubjectivité n'est donc pas un argument pour suffisant pour imposer une réalité externe comme cause des perceptions, elle dit au contraire que l'acte de percevoir cause, au moins en partie, la nature de la perception., ce qui apparaît clairement dans la théorie de la décohérence. En effet, celle-ci dit que le système perçu reste dans un état superposé et ce n'est que la perception que nous en avons qui paraît réduite. De plus, ceci admet que lorsque deux observateurs sont d'accord sur leurs perceptions, celles-ci sont effectivement identiques. Mais ce n'est pas obligatoire, car dans l'interprétation du solipsisme convivial, il est possible que l'intersubjectivité soit apparemment respectée sans que les perceptions des différents sujets soient les mêmes. Celle-ci ne peut donc pas être utilisée comme un argument en faveur de de l'existence d'une réalité externe cause des perceptions.  

     

    *La résistance au réel.

    Si le réel n'était que construction humaine, il n'y aurait aucune raison que les théories les mieux construites soient contredites par l'expérience. Or l'histoire des sciences montre nombre de "belle théories", fécondes et puissantes, ont été réfutées par "quelque chose qui dit non" (et qui ne peut pas être "nous") selon l'expression de Bernard d'Espagnat. Cet argument suppose implicitement qu'une construction humaine sera "sa propre mesure" et ne se heurtera à aucune contradiction. Dans cette approche, on suppose que tout est construction humaine, que nous inventons les règles. Les théories sont ce qu'on pourrait appeler des constructions explicites, conscientes et formelles destinées à rendre compte d'une "construction perceptuelle" inconsciente qui serait cette construction humaine: le réel. Alors, étant donné ce que nous avons vu sur la consistance des systèmes formels, il i'y a rien d'étonnant à ce que nous constations des désaccords et des contradictions entre les deux constructions, nos constructions théoriques et ce que nous appelons le réel. En fait, nous ne savons pas édifier de construction paradigmique consistante. Les contradictions seront éliminées par une modification dialectique des théories et de ce que nous appelons le réel (celui de la physique newtonnienne n'est pas celui de la physique quantique). La résistance du réel n'est donc pas un argument convaincant de postuler la résistance d'une réalité extérieure.

     

    *Préexistence de quelque chose qui connaît à la connaissance.

    Bernard d'Espagnat l'a présenté comme une nécessité logique: si on parle de connaissance; il faut bien que quelque chose connaisse. L'existence ne peut donc procéder de la connaissance. Bonsack, pourtant proche de certains points de vues de d'espagnat , adopte le point de vue opposé, la point de vue "épistémologique", par contraste avec ce point de vue "ontologique". Il consiste à rendre compte de la façon dont le sujet est amené à postuler l'existence à partir du flux perceptif. De plus, il n'est pas impossible que le seul existant soit le pensée. Cet argument, bien que de bon sens n'est donc pas définitivement probant.

     

         b) Arguments en faveur du réalisme épistémique.

    Ces arguments prennent place dans un cadre acceptant l'existence d'une réalité extérieure. 

     

    *L'argument du succès empirique est un point essentiel des défenseurs du réalisme épistémique: comment nos théories pourraient-elles être empiriquement adéquates si elles ne décrivaient pas, au moins partiellement des entités et des mécanismes réels? Il serait alors miraculeux qu'elles parviennent à décrire et prédire cette réalité empirique. Cet argument plaide aussi indirectement en faveur du réalisme métaphysique puisqu'il s'appuie nécessairement sur l'existence d'une réalité extérieure. Sa séduction exerce un force d'attraction dont il est difficile de s'affranchir, sans doute dû au fait que le mécanisme psychologique qui nous y fait adhérer joue un rôle important dans notre fonctionnement quotidien et qu'il s'est exercé dès l'enfance. Simplifié à l'extrême, cela revient à expliquer que nous voyons l'herbe verte parce qu'elle est réellement verte. Mais on a vu précédemment que c'est une fausse explication qui soulève plus de difficultés qu'elle n'en règle. Par ailleurs, on ne peut soutenir qu'une théorie empiriquement adéquate à un moment est vraie, l'histoire regorge de telles théories qui ont été ensuite réfutées et un raisonnement inductif pessimiste incite à penser que cela sera faux également pour les théories actuelles. On pourrait, à l'instar de Boyd adopter un concept de vérité approximative, mais ce concept est insatisfaisant et ne résout pas le problème.

    La situation imagée donnée par Hervé Zwirn est parlante. Imaginons que Monsieur R le réaliste) nous présente une théorie T empiriquement adéquate (au sens où toutes ses prédictions ont été réalisées, mais aussi où toutes ses prédictions futures le seront): c'est parce que T est vraie  (que tous les objets dont elle parle existent réellement et que les lois qu'elle utilise correspondent à des mécanismes ou à des contraintes qui reflètent le structure de la réalité telle qu'elle est vraiment). Cette histoire est supposée avoir lieu dans un monde futur où la science aura progressé à tel point que que cette théorie a pu être construite et vérifiée depuis des générations. Ce n'est pas le cas de la physique quantique, car même si elle a notre confiance, nous savons qu'elle doit être généralisée pour tenir compte à la fois de la relativité restreinte et de la relativité générale. Cela pourrait être le cas de la "théorie du tout"  que certains physiciens pensent être à notre portée prochainement grâce à aux théories des supercordes. Ainsi on pourrait échapper à l'objection concernant les théories empiriquement adéquates et réfutées ensuite? Si nous acceptons que T est empiriquement adéquate pour les observations passées, qu'est ce qui permet à Monsieur R de croire que que cette adéquation persistera dans l'avenir (nous avons vu toutes les objections au sujet de l'induction)? Sa réponse pourrait être: si l'adéquation passée de T ne peut s'expliquer autrement que par le fait que est vraie, (sinon ce serait un miracle ou une suite invraisemblable de coïncidences favorables); or, si T est vraie, son adéquation empirique dans le futur est certaine. En effet, si une observation a venir était en désaccord avec les prédictions de T, c'est que le phénomène réel sous-tendu par cette observation serait différent d'une façon ou d'une autre de ceux décrits par T et donc que T n'est plus vraie. Donc si T est vraie, dans ce sens, elle est vraie de toute éternité, presque par définition. On atténue ainsi le problème de l'induction, mais cela présuppose d'accepter la vérité de T.        

    Dans ce schéma, adéquation empirique et vérité deviennent équivalentes: 1) T a été empiriquement adéquate dans le passé. 2) La seule explication possible est que T est vraie. 3) T sera donc empiriquement adéquate dans le futur. Cependant le point 2) est réfuté en raison de la sous-détermination des théories car il est possible qu'il existe une ou plusieurs théories T' empiriquement équivalentes à T mais incompatibles avec elle. Il est impossible qu'elles soient simultanément vraies dans le sens adopté par Monsieur R dont la position n'est donc pas justifiée. Une autre critique est basée sur le fait que qu'étant donné un nombre limité d'observations, il existe un grand nombre, voire une infinité de théories capables de décrire correctement ce ensemble; il n'y a donc pas à s'étonner du fait que nous sommes capables de construire des théories adéquates à un instant. On pourrait dire que c'est non la description des données connues, mais la prédiction de faits nouveaux qui serait miraculeuse si rien dans la théorie ne correspondait à quelque chose de réel (l'exemple souvent cité est la découverte de Neptune). Mais il ne faut pas retenir que les succès et oublier les échecs. La découverte de Neptune est un succès considérable pour la mécanique newtonnienne, mais l'inexistence de Vulcain, censé expliquer  la précession du périphélie de mercure est un échec tout aussi considérable. C'est ainsi que celle ci est réfutée par l'invention de la relativité générale. 

    La science progresse, selon Popper par essais et erreurs, conjectures et réfutations. Dans le nombre de théories empiriques disponibles (fini) dans l'infinité de théories différentes, voire incommensurables ou contradictoires, il arrive qu'un certain nombre sont en compétition à une époque. Parmi celles-ci, des tests supplémentaires permettent parfois d'en dégager certaines qui font des prédictions incompatibles. C'est, dit Hervé Zwirn, le cas de la théorie de Brans et Dicke écartée récemment en tant que concurrente de la relativité générale. Dans le cas de la théorie newtonnienne, la prédiction vérifiée et la découverte de Neptune avaient été comptées comme un argument fort en sa faveur. Un autre exemple est celui du modèle de Weinberg-Salam unifiant les interactions faibles et électromagnétiques. Elles étaient en concurrence avec d'autres théories avant que les bosons intermédiaires soient découverts et permettent leur survivance. A postériori, il semble miraculeux que ces théories aient fait ces prédictions. Mais il n'est pas étonnant que l'une d'entre elle se révèle momentanément correcte. A d'autres moments, aucune des théories en présence ne réussit à prendre en compte les faits nouveaux observés et il faut construire une nouvelle théorie. C'est un changement de paradigme (voir la relativité générale et la physique quantique). Il n'y a pas à s'étonner du "miracle" de la prédiction de faits nouveaux, ce n'est qu'une surprise psychologique comparable à celle qu'on éprouve après avoir parcouru un long chemin dans un labyrinthe et avoir éliminé toutes les impasses.                

    L'argument de Monsieur R semble donc peu convaincant, rien ne semble justifier la nécessité d'une correspondance entre concepts théoriques et entités réelles pour rendre compte de l'adéquation empirique des théories. Mais le réalisme structurel défendu par Worral, dans le contexte où on admet une certaine réalité, peut être une tentative d'explication de la réussite des théories moins sensible aux objections.

     

    TOUTES LES CHOSES SONT RELIEES LES UNES

     AUX AUTRES PAR LA CAUSE ET L'EFFET.

    UN ACCIDENT N'EXISTE PAS.

    *La relation cause-effet.

    Nous venons de voir que la première forme de cet argument est liée au principe d'induction: de la régularité de certaines associations dans le passé, on infère qu'elles se reproduiront dans le futur. Ce raisonnement est à la base même de toute prédiction, scientifique ou pas. Le critique de Hume est rationnellement fondée et on ne peut justifier ce principe sans recourir à un autre principe similaire. Russel cite l'exemple du poulet qui associe la main du fermier avec la nourriture qu'il lui donne jusqu'au jour où cette main lui tord le cou. Mais si cependant l'induction ne fonctionnait pas un peu, le monde serait différent de ce qu'il est, aucune connaissance ne serait possible puisque rien ne se répéterait. Mais en voyant l'ensemble des observations qui ont été faites, l'induction a fonctionné suffisamment souvent pour que la probabilité qu'elle ne fonctionne pas dans le futur est faible. Cependant, un tel raisonnement, faisant appel lui aussi à un principe d'induction est vicié par nature. 

    Le scepticisme radical de Hume, pris au pied de la lettre, interdit toute confiance dans un discours prédictif et elle interdit de rendre compte de l'activité humaine autrement qu'en considérant qu'elle est irrationnelle. Pour éviter cette difficulté, Kant a postulé que l'induction est une catégorie à priori de l'entendement. En ne retenant pas le critique de Hume, il semble cependant qu'il faut éviter l'argument cause-effet pour justifier une quelconque correspondance réelle entre le "discours" et "le monde". L'induction vient de nous et ne nous donne aucune indication sur la nature de d'une éventuelle réalité. 

     

         c) Que reste-t-il alors pour défendre la réalité?

    Aucun des argument habituels en faveur de l'existence d'une réalité en soi, indépendante de toute connaissance ou de toute "interférence humaine" ne paraît véritablement contraignant et il ne semble nullement obligatoire que les entités théoriques et les mécanismes ou les lois du discours scientifique doivent nécessairement avoir un correspondant réel. On peut retenir néanmoins une version du réalisme structurel comme explication de la réussite partielle des théories jugées empiriquement adéquates à un instant. Si on rejette l'idéalisme radical, on peut alors adopter provisoirement une position proche de d'Espagnat, qui consiste à admettre l'existence de quelque chose qui procède en partie de l'esprit humain bien que n'en n'étant pas une pure émanation, qui cause la réalité empirique  et dont les structures se reflètent d'une certaine manière dans les théories scientifiques qui réussissent. 

     

    3) Esquisse d'un scepticisme épistémologique. position présentée par H. Zwirn, que je partage dans cette approche de réflexion).

     

         a) la cécité empirique: première approche.

    L'analyse de l'empirisme logique (voir cet article) a montré qu'il n'existe pas d'énoncé purement observationnel et derrière le mot empirisme se cache une imbrication de concepts théoriques et d'observations. Accepter de reconnaître qu'une théorie T a été jusque là empiriquement adéquate, c'est manifester déjà un certain engagement vis à vis de T et accepter le cadre conceptuel qu'elle définit pour interpréter les observations faites. c'est accepter que l'ensemble des observations faites, nécessairement guidées par le programme de recherches induit par T, constitue un ensemble significatif (au sens d'échantillon statistiquement significatif) par rapport à toutes les observations possibles et dont certaines départageraient T des théories concurrentes. C'est aussi considérer que T est empiriquement pertinente, c'est à dire qu'elle induit un cadre conceptuel qu'on juge adapté pour engendrer un programme de recherche qui guidera les expériences à faire pour la tester. C'est donc le premier pas pour entamer un programme qui conduira à sa confirmation ou à sa réfutation. Mais cet engagement ne peut être justifié que si la structure de T ne s'éloigne pas trop du paradigme dominant sur le type de bonnes théories et si T peut se prévaloir d'un certain nombre de succès à son actif (par un fait précédemment inexpliqué ou par la prévision réussie d'un fait nouveau). Il y a alors renforcement de notre confiance qui en retour nous conforte sur les bons indices de l'adéquation empirique de le théorie. C'est conforme au processus décrit par Boyd"il existe une relation dialectique entre la théorie courante et la méthode utilisée pour son amélioration."

    Boyd y voit une condition de possibilité d'un développement réaliste de la science c'est plutôt un argument qui montre que l'adéquation empirique n'est pas des plus solides. Ce processus réflexif, lorsqu'il est fructueux, peut converger vers l'acceptation conjointe de de la pertinence et de l'adéquation empirique. Cependant est-ce une garantie réelle? Un tel processus, enclenché dans une mauvaise direction, pourrait entretenir à tort son propre succès. 

    Une première manière consiste à fournir des précisions suffisamment vagues pour que, quelque soit le résultat de l'expérience, il soit jugé conforme aux prévisions ou à ne retenir que les résultats qui confirment les prévisions (l'astrologie telle qu'elle est pratiquée de nos jours, en est un exemple). Un deuxième manière consiste à recourir à des hypothèses ad hoc pour rendre compte d'échecs prédictifs. Popper les appelle des "stratégies auto-immunisatrices".  Cela pose le problème de savoir ce qu'est une bonne méthodologie scientifique. Il n'existe aujourd'hui aucun moyen rigoureux de définir ce qu'est une authentique théorie scientifique, mais malgré l'absence de critères explicites, les progrès méthodologiques nous permettent d'éliminer assez sûrement les théories manifestement déviantes qui utilisent les méthodes décrites précédemment. 

    Une troisième manière, plus subtile d'entretenir faussement un succès empirique consiste en ce que la théorie induise un cadre conceptuel tel qu'aucune expérience qui pourrait être de nature à le réfuter ne soit menée: c'est un premier aspect de "la cécité empirique". Un exemple caricatural est de s'imaginer une terre jumelle qui existe dans un univers newtonien. Sur cette terre 2, les lois de la nature sont décrites en gros par la physique newtonienne du temps de Laplace. Le programme de recherche est exclusivement centré sur le comportement des objets macroscopiques et reste aveugle aux autres phénomènes que nous connaissons. La théorie dominante est empiriquement adéquate puisqu'on se borne à l'utiliser dans son domaine de réussite et on ne considère comme scientifique que les expériences qui portent sur ce domaine et rien que sur ce domaine. Pour les physiciens réalistes de cette terre 2, la théorie newtonienne est don vraie. Dans cette situation, l'adéquation empirique induite par la théorie provient d'une mauvaise pertinence empirique de la théorie. Le programme induit par la théorie a conduit les physiciens à une cécité empirique les empêchant de faire les expériences nécessaires pour la réfuter, comme par exemple celles consistant à faire interférer deux rayons lumineux ou à étudier le spectre du corps noir. 

    Il est certes facile d'élever des objections contre cet exemple, mais elles ne sont pas probantes.  La première est que dans un monde où il n'y a pas de place pour le relativité restreinte, les lois de la nature seraient tellement différentes que des nôtres que le monde pourrait bien être comment le supposent les physiciens de la terre 2. A cette objection, on peut répondre qu'il qu'après tout, il est possible d'accepter un monde où tout est comme chez nous à l'exception des lois relativistes. La deuxième objection concerne le fait qu'on pourrait supposer que les physiciens de la terre 2 ne se posent aucun problème concernant la lumière et que l'électricité ou le magnétisme n'ont pas été découverts. Mais sur cette terre 2, l'électricité et le magnétisme existent et par conséquent, les physiciens devraient s'être rendu compte. Cette objection provient du fait qu'on pense généralement qu'il n'est pas possible de passer à côté de la lumière ou du magnétisme. Mais ce qui est mis en évidence ici, c'est le fait qu'un programme de recherche induit par une théorie dominante peut très bien conduire à oublier de remarquer certains phénomènes de nature non évidente. Les expériences mises en oeuvre pour vérifier les inégalités de Bell ne s'imposent pas spontanément à un expérimentateur, il faut un travail théorique préliminaire complexe. Il en est de même pour la non-séparabilité. Il a fallu le génie de Bell pour y parvenir alors que ni Einstein ni bohr, pourtant préoccupés par le sujet, n'ont été capables d'imaginer une expérience réelle susceptible de la mettre en évidence. 

    Il n'est donc pas absurde de penser que de tels phénomènes complexes qui pourraient, s'ils étaient testés, soient dissimulés à l'intérieur du cadre d'une théorie. Dans ce cas, la théorie ne rencontrera aucun démenti alors qu'elle sera empiriquement fausse. C'est bien ce qui s'est passé lorsque le programme de recherche de la physique a conduit à se concentrer sur les systèmes intégrables. Durant toute une période, elle a oublié d'expérimenter sur les systèmes chaotiques, laissant croire à des générations de physiciens que le monde était intégrable, alors qu'on sait maintenant que la majorité des systèmes dynamiques est chaotique.

    La cécité empirique, sous cet aspect, est le fait d'être aveuglé dans son champ de recherche par un programme issu d'une théorie dominante bornée (qui a des bornes), de telle sorte que certaines parties de la réalité empirique restent ignorées du discours théorique et des préoccupations scientifiques. Elle est donc liée à la non-pertinence d'une théorie et doit rendre prudent quant aux affirmations portant sur l'adéquation empirique et ne pas lui conférer un statut de certitude trop fort. Ainsi, à aucun moment nous ne disposerons d'une théorie adéquate décrivant la totalité de la réalité empirique car cette dernière débordera toujours de l'ensemble des concepts disponibles. C'est un "maladie" inévitable quelles que soient les avancées et les découvertes qui interviendront dans le futur.

     

         b) Le concept de vérité et la sous-détermination empirique des théories.

    Beaucoup de conceptions réalistes sont fondées sur le concept de vérité-correspondance: un énoncé est vrai en vertu du fait qu'il exprime un état de chose qui lui correspond. Dans l'approche réaliste traditionnelle, une théorie (empiriquement adéquate) est vraie si et seulement si ses énoncés correspondent à des états de fait de la réalité, de la même manière que le récit fidèle d'un film nous permet de savoir ce qui s'est réellement passé dans ce film. Mais contrairement à un film où on ne peut avoir deux récits fidèles et contradictoires, la sous-détermination des théories pose problème car il est possible que deux théories contradictoires soient adéquates. Prenons l'exemple de deux théories qui  postulent l'une des entités ponctuelles et l'autre  uniquement des entités arbitrairement petites mais jamais ponctuelles. Laquelle est alors vraie? y a-t-il ou non des entités réellement ponctuelles? 

    Pour un instrumentaliste, cette question n'a pas de sens: elles ne sont pas en contradiction sur ce qu'elles disent, puisqu'il est impossible de les distinguer empiriquement mais sur la manière dont elles le disent. Le concept d'une vérité, au sens habituel du terme, est donc remis en cause. Si on adopte le point de vue qu'une théorie se réduit à son adéquation empirique, alors on se trouve forcé d'admettre que pour qu'une question n'ait pas de sens, il suffit que deux théories adéquates équivalentes lui donnent une réponse différente. La question se trouve alors rejetée au métaniveau, elle ne porte plus sur le monde, mais sur notre manière d'en parler. Un électron suit-il une trajectoire définie? non en mécanique quantique, oui dans la théorie de Bohm.

    Les instrumentalistes sont prudents et ne vont pas jusque là, mais leur position concernant la vérité n'est sans doute pas justifiée. En fait, nos théories doivent être considérées seulement comme un moyen commode (des algorithmes) pour parler des phénomènes et les prédire. Des questions grammaticalement construites pour pour porter sur la réalité sont dépourvues de sens. Les concepts doivent considérés comme des outils internes à la description sans référent dans la réalité. Ils ne sont pas absolus puisque un autre langage peut ne pas les utiliser mais néanmoins arriver au même degré d'efficacité prédictive.Une analogie peut éclairer cette difficulté: Le Français et l'anglais sont équivalents pour parler des arbres; en français le mot arbre possède 5 lettres alors qu'il en possède 4 en anglais. La question "est-ce qu'un arbre possède 5 lettres?" est dépourvue de sens, le nombre de lettres n'est par une propriété des arbres. Une erreur de même nature (mais moins facilement détectable) est commise dans le cas de certaines questions portant sur des entités théoriques de la physique: par exemple, un électron suit-il ou non une trajectoire définie? On a vu que que le concept de trajectoire a un sens dans la théorie de Bohm, mais pas en mécanique quantique. Ce n'est donc pas une propriété des électrons mais seulement des outils formels qu'une théorie particulière utilise pour parler des électrons. 

    Ce constat peut-il se comprendre?  Le langage courant nous autorise à croire que la trajectoire appartient vraiment aux objets de la réalité. Le processus d'apprentissage que suit tout être humain à partir de la petite enfance évolue vers un stade préscientifique dans lequel se forgent les représentations mentales qui lui servent à ordonner ses perceptions. L'unique théorie à ce stade préscientifique et pré-épistémologique est le langage courant. L'image intuitive est le plus souvent construite dans un cadre réaliste naïf et les entités du langage sont considérées comme se référent à une réalité extérieure. Il en résulte une relation biunivoque entre la description du langage et les objets de la réalité ainsi construite. Les propriétés des objets leur sont attribuées en propre. Il est souvent impossible de faire, à ce stade, la différence entre propriété des objets et propriété des outils utilisés pour en parler (sauf quand c'est évident comme dans le cas des arbres ci-dessus). Ce n'est que lorsque le langage courant ne suffit plus pour décrire et prédire les phénomènes plus complexes que la différence peut apparaître (avec les théories scientifiques formalisées) et ce n'est pas facile tant est grande la tentation de projeter les propriétés des entités théoriques sur les référents postulés de ces entités. Alors, la majorité des chercheurs préfère se placer dans le cadre de la théorie dominante pour la perfectionner plutôt que de se lancer dans la recherche de formalismes différents produisant les mêmes prédictions. C'est ce que Kuhn appelle la phase de recherche "normale" qui ne prend fin qu'avec l'apparition de difficultés qui peuvent aboutir à un changement de paradigme. 

    Mais une recherche de théories empiriquement incompatibles pourrait peut-être permettre de déceler la non-pertinence de certaines questions sans réponse et de comprendre pourquoi certaines questions n'ont pas de sens (comme la simultanéité de deux évènements ou des questions traitées dans les théories modernes de cosmologie quantique). Mais il nous faut abandonner l'idée selon laquelle une théorie adéquate fournit une description littéralement vrai de la réalité et admettre que de nombreuses questions apparemment sensées portant sur la réalité ne sont que de fausses interrogations car elles portent en fait sur des aspects purement internes des théories utilisées pour la décrire.

         

         c) Les théories scientifiques comme algorithme de compression.

    La théorie algorithmique de l'information, inventée par KolmogorovSolomonov et Chaitin, permet de voir les théories scientifiques sous un angle qui éclaire ce qu'on vient d'examiner. La complexité algorithmique d'une chaîne de bits est donnée par la taille du plus petit programme autodélimité capable d'engendrer cette suite. par exemple, la complexité de la chaîne infinie d'une suite de 0 et de 1 est faible car elle peut être être engendrée par le programme: "faire suivre alternativement 0 et 1 à l'infini". Mais s'il est possible de trouver un programme d'engendrement de longueur plus courte que celle de la suite, celle-ci est "aléatoire", en fait, la suite n'est régie par aucun algorithme. Elle contient une beaucoup plus grande quantité d'information qu'une suite qui ne l'est pas. Une suite non aléatoire contient des redondances qui peuvent être compactées et c'est justement ce qui permet d'expliciter un algorithme qui l'engendre. 

    Le concept de complexité algorithmique peut être étendu aux systèmes formels. Un système formel ne peut démontrer aucun énoncé dont la complexité est supérieure à celle de son système d'axiomes (dans ce cas, l'énoncé sera indécidable). Les résultats expérimentaux d'une peuvent être considérés comme un ensemble d'énoncés appartenant au langage de la théorie puisque la théorie est destinée à les décrire et à les prédire. La théorie, s'il elle est adéquate, est un moyen d'engendrer l'ensemble de ces résultats. Sur un plan purement formel et si on ne considère que les résultats expérimentaux sous leur aspect dénoncés de ce langage, on peut considérer la théorie comme un algorithme permettant d'engendrer l'ensemble de ces énoncés. On peut dire que le domaine de la science est le domaine des phénomènes qui se laissent décrire par de tels algorithmes, ce qui n'est pas le cas de l'art par exemple.  Il est impossible de produire un algorithme engendrant des symphonies grandioses ou des tableaux. Ce n'est pas le cas de la psychologie, nous ne savons pas prédire les états affectifs des êtres humains. On est alors moins tenté d'être étonné que le monde de la physique soit compréhensible (comme l'a fait Einstein) ou trouver extraordinaire que les mathématiques sont soient si efficaces comme l'a fait Wigner. Nous ne savons appliquer la science qu'aux domaines où elle est applicable, celui des phénomènes mathématiquement compressibles qui se laissent engendrer par des algorithmes. Les seuls phénomènes que nous considérons comme scientifiques sont ceux-là (à l'exclusion de l'esthétique, de l'affectif...). Nous sommes comme l'ivrogne de l'histoire qui cherche ses clés sous la lampe, non parce que c'est là qu'il les a perdues mais parce que c'est le seul endroit où il y a de la lumière. Le seul étonnement qu'on devrait avoir, c'est de s'émerveiller qu'il reste de tels domaines. Tout dans le monde pourrait n'être que processus aléatoire non compressible, art, affectivité et dans ce cas la science n'existerait pas. 

    Si les théories sont considérées comme des algorithmes, il est compréhensible qu'il soit possible de trouver plusieurs théories empiriquement équivalentes. Un algorithme n'est jamais unique, d'où les recherches pour trouver les plus performants. Deux algorithmes en font pas appel aux mêmes intermédiaires de calcul. On se trouve donc face à une contradiction si on attribue à ces derniers un référent réel puis qu'on ne postulera pas l'existence de mêmes objets selon l'algorithme qu'on adopte. On peut objecter que si ces intermédiaires posent problème, les entités que que les deux algorithmes sont supposés engendrer doivent une existence réelle puisque les deux algorithmes les produisent. Les prédictions empiriques portent sur perceptions qu'on peut penser réelles, mais postuler l'existence d'objets réels cause de nos perceptions se heurte à aux objections à la deuxième forme de la relation cause-effet que nous avons signalées précédemment.  

    En conclusion, se représenter les théories physiques comme de simples algorithmes  permettant de prédire les résultats empiriques permet de mieux comprendre les réserves sur le réalisme métaphysique et le réalisme épistémique. Les limites de démontrabilité des systèmes mathématiques permettent d'envisager que la possibilité que certains énoncés soient hors de portée de toute prédiction d'une théorie physique. 

     

    le principe d'identité et d'indécidabilité !

         d) Une application empirique de l'indécidabilité.

    Un éventuelle "théorie du tout" permettra-t-elle , au moins en principe de tout prévoir? Ce n'est nullement le cas?  On a vu que le "problème de l'arrêt", qui consiste à prédire si un ordinateur auquel on fournit un programme donné s'arrêtera, est un problème indécidable. Donc, même si nous disposions d'une "théorie du tout", elle serait incapable en général de prédire le comportement à long terme du système physique constitué par un ordinateur en fonction du programme qu'il est en train d'effectuer. On peut penser qu'on peut trouver un algorithme particulier qui prédit l'arrêt on non d'un système. C'est faux. Le théorème de Gödel montre qu'il existe des programmes pour lesquels aucun algorithme ne peut prédire l'arrêt ou la continuation infinie. La totalité des mathématiques qu'utilise la physique est contenue dans ZF (axiomatique de Zermelo- Fraenkel). Appelons T la théorie obtenue en ajoutant à ZF la partie nécessaire pour obtenir une théorie physique (par exemple la théorie du tout). Elle est donc envisagée comme un système formel. T est-elle capable de prédire le comportement (l'arrêt ou non), d'une machine de Turing programmée pour vérifier pour chacun des entiers successifs, un énoncé ("V n P(n)") qui est indécidable au sens du théorème de Gödel? Si T est consistante, il n'est possible de prouver formellement dans T que ni est vrai (la machine calculera indéfiniment) ni que E est faux (elle s'arrêtera pour une valeur de n pour laquelle laquelle P est faux).  La réponse d'un mathématicien sera négative. En revanche, un raisonnement sémantique montrera que si T est consistante, la machine ne s'arrêtera pas, car cela signifie qu'on  a trouvé une valeur de n pour laquelle P est faux  et donc qu'on a prouvé la fausseté de contrairement à ce qui a été postulé. Ce raisonnement  n'est toutefois pas une preuve formelle, ce qui fait dire au mathématicien qu'il est impossible de démontrer dans T. Le physicien acceptera la preuve  car l'utilisation d'une théorie physique ne se limite pas à ses déductions purement formelles. Cela semble remettre en cause ce qui a été dit précédemment, que la théorie T, pour le physicien, est incapable de prédire le comportement de la machine de Turing considérée. 

    Mais, voici un exemple pour lequel l'impossibilité de prédiction concerne aussi bien le mathématicien que le physicien. L'adjonction à ZF de grands cardinaux peut rendre la théorie contradictoire (voir articles 3 "le programme de Hilbert et les indécidables). Le rajout de certains axiomes de grands cardinaux peut être telle que la théorie obtenue (ZFE) soit totalement inconnue au sens où non seulement elle n'est ni démontrable ni réfutable dans ZF, mais encore où on est dans l'incapacité d'avoir une opinion précise à son sujet. Soit une machine de Turing énumérant les théorèmes de ZFE, qui s'arrête lorsqu'elle a obtenu la démonstration de "1 = 2". Pour un physicien, la théorie T est-elle capable de prédire le comportement de cette machine? La réponse est cette fois négative, car cela consisterait à prédire la consistance de ZFE, ce qui n'est possible ni formellement dans le cadre de T. Nous retrouvons le résultat annoncé, qui n'est qu'une conséquence directe inévitable des limites des systèmes formels. Ce constat n'est nullement dû à une incertitude sur l'état initial, à une méconnaissance des lois qui régissent le fonctionnement de l'ordinateur ou à des effets quantiques et il existerait même dans un monde totalement classique. Il est impossible de construire une théorie qui prédise, en général, le comportement d'un ordinateur (ou d'une machine de Turing) en fonction d'un programme qu'on lui fait exécuter. C'est comme si on ne pouvait pas prévoir la vitesse d'arrivée au sol d'un caillou en fonction de la hauteur à laquelle il a été lâché. Ceci montre qu'il existe des objets simples et courants (les ordinateurs par exemple) dont les lois de fonctionnement sont connues et dont le comportement est cependant non prédictible. Ainsi, "même dans un univers simple, non quantique..., l'avenir continuerait de nous échapper" (Delahaye).

    Conclusion de ce chapitre: Il existera toujours des parties de la réalité empirique qui échappent à la prédiction et sur lesquels toute théorie restera aveugle. C'est un autre aspect de la cécité empirique.

                                          

         e) La cécité empirique: une maladie inévitable.

    Dans un premier aspect, la cécité empirique peut, en étant aveugle à certaines parties de la réalité empirique, induire un programme de recherche tel qu'aucune expérience risquant de la mettre en échec ne puisse être conduite. Elle sera corroborée et considérée comme adéquate.

    Le deuxième est lié au fait que toute théorie est dans l'incapacité de se prononcer quand des phénomènes sont exprimés par des énoncés indécidables dans le système formel qui la constitue. De plus, le programme de recherche induit par la théorie détermine les expériences faites en vue de tester ses prédictions. Ce programme ne pousse donc pas à expérimenter les domaines sur lesquels le théorie est muette, car cela n'aurait à priori pas d'incidence sur la théorie et il est possible que les concepts  nécessaires pour une telle expérimentation n'existent pas. A l'époque de Maxwell, des tests sur la non-séparabilité n'auraient sans doute pas abouti, car il fallait des concepts issus de la mécanique quantique pour se poser la question.

    Il résulte de ce qui précède que, quelle que soi la théorie considérée, il existera des phénomènes qu'elle ne pourra prédire (incomplétude prédictive) et en conséquence, certaines parties de la réalité empirique seront hors de son champ de pertinence. L'exemple de la machine de Turing peut sembler artificiel. Le théorème de Gödel a été le premier à être explicité pour montrer l'incomplétude de l'arithmétique avant de fournir plus tard des exemples d'indécidabilité plus naturel. Ainsi, trouver un énoncé empirique simple et naturel dont l'indécidabilité pourrait être établie dans "la théorie du tout" n'est pas actuellement une tâche à la portée des scientifiques. Mais cela ne remet pas en causes les conclusions de ce chapitre, la réalité empirique débordera toujours du champ de description théorique et nous ne disposeront jamais d'aucune théorie décrivant et prédisant la totalité de cette réalité.

     

    4) Une conception à trois niveaux.

    Nature possible de ce "quelque chose" dont on postule l'existence en refusant l'idéalisme radical.

     

         a) Le représentable et le conceptualisable.

    *Le représentable. C'est ce dont on peut avoir une image, claire et distincte. Les perceptions interprétées (ce qui est donné à la conscience, par opposition à ce qui est donné aux sens), sont représentables et représentées. On peut parler d'une partie de la réalité empirique, la "réalité phénoménale", qui est l'ensemble de nos perceptions interprétées. Tous les faits expérimentaux empiriques font partie de la réalité phénoménale, ils sont le constat de perceptions interprétées et sont représentables puisqu'ils se manifestent comme des images perceptives directes et conscientes.

    *Le conceptualisable est ce dont on peut parler en termes descriptifs, sous forme verbale ou mathématique. Certains concepts sont représentables (table, force, état en physique classique). D'autres ne le sont pas (état superposé, enchevêtré ou non-séparabilité en physique quantique). Pour ces derniers, il est impossible d'en avoir une image mentale claire, mais il est possible d'en donner une description mathématique, ce que fait la mécanique quantique qui conceptualise ces notions. 

     

         b) Le réalisme des phénomènes

    Beaucoup de conceptions, réalistes ou non, suggèrent la réalité empirique comme comme une scène sur laquelle se déroulent les phénomènes que nous n'avons qu'à observer. C'est le point de vue qui considère un "face à face de l'homme et du monde" qu'on peut appeler "le réalisme des phénomènes". C'est un équivalent du réalisme des objets qui consiste à croire que les objets physiques existent, sont là et que nous les observons parce qu'ils sont là. L'acceptation du réalisme métaphysique en est une conséquence. Cette conception est même présente dans beaucoup de celles qui rejettent le réalisme métaphysique et qui nient l'existe en soi des objets en affirmant que nous n'avons un accès direct qu'aux phénomènes en nous contentant de prendre conscience de la réalité empirique de manière passive. Ce n'est pas que nous ne faisons pas d'effort, mais cela ressemble plus à celui que nous faisons en nous baissant pour ramasser un caillou qu'à celui qui consiste à créer quelque chose qui n'existerait pas sinon. 

    Les perceptions interprétées doivent être les éléments sur lesquels nous devons nous appuyer sans être considérées seulement comme de simples prises de conscience de quelque chose de préexistant qui serait la réalité empirique comme celle de l'image  réaliste traditionnelle. En fait, aucun phénomène extérieur n'existe et nous sommes responsables de nos perceptions, d'une certaine manière nous créons la réalité phénoménale. Mais nous ne sommes pas libres de créer comme bon nous semble, certaines contraintes existent, la réalité empirique. Cette dernière est l'ensemble des conditions qui rendent possibles nos perceptions tout en les contraignant. Elle n'est pas donnée en tant que telle, mais c'est le cadre des actions, physiques ou psychiques que nous mettons en oeuvre dans le processus cognitif, ensemble des potentialités qui, lors de leur actualisation deviennent perceptibles et donnent naissance à nos perceptions. de façon imagée, la perception est à la potentialité ce que le résultat d'une mesure quantique est à la grandeur physique mesurée. Un phénomène n'est donc pas quelque chose que nous observons passivement, c'est une entité qui se manifeste lors d'une opération dans laquelle nous avons un rôle important à jouer.

    Nos perceptions sont en un sens imposées de l'extérieur (la réalité phénoménale est l'ensemble de nos perceptions), nous pouvons avoir l'idée d'une réalité phénoménale qui n'existe pas encore, mais qui vient à l'existence dans le cours de notre tâtonnement. Mais ce à quoi nos recherches donnent existence n'est pas notre oeuvre propre. Le point de vue du réalisme des phénomènes semble erroné. La réalité empirique ne peut être considérée comme l'ensemble des phénomènes, de même que le monde ne peut considéré comme l'ensemble des objets. D'une certaine manière, nous fabriquons le réalité phénoménale à partir de la réalité empirique. Il faut donc abandonner le fameux face-à-face entre le sujet et le monde. Le deuxième niveau est celui de la réalité empirique dont le nom est impropre. Car sa réalité n'est pas constituée d'objets, forces, champs ou de quoi que ce soit de représentable, mais de l'ensemble des potentialités actualisables selon certaines contraintes qui nous empêchent la fabriquer selon notre bon vouloir. On retrouve sous cette forme l'idée du réalisme structurel. L'adéquation empirique ("adéquation phénoménale") des théories contradictoires provient de leur respect de la structure de la réalité empirique, des contraintes (voir ci-dessus) qu'elle implique. Il n'y a plus de réalité à laquelle peuvent faire référence des entités théoriques (elle n'est pas constituée d'objets physiques ayant un référent ni d'entités physiques au sens habituel du terme, mais de perceptions actualisées).  De plus, si les théories physiques ne sont que des algorithmes, alors plusieurs théories peuvent rendre compte de la réalité phénoménale si ces algorithmes reflètent les contraintes structurelles imposées à la réalité empirique.

    La réalité phénoménale est conceptualisable et représentable par définition. En revanche, la réalité empirique est conceptualisable (nous sommes capables de fabriquer des théories qui rendent de sa structure), mais pas représentable (elle est potentialité alors qu'une représentation est par essence actualisée). De plus, en raison de la sous-détermination des théories, elle n'est conceptualisable que de manière partielle, et il est impossible de recoller les différentes manières (équivalentes) de la conceptualiser pour en obtenir une représentation globale. (L'épistémologie de Quine comporte une autre thèse essentielle, dite « de la sous-détermination des théories par l'expérience ». On peut la résumer ainsi : deux théories différentes peuvent être empiriquement équivalentes ; elles peuvent être vérifiées et falsifiées par le même budget d'observations possibles, et cela même si l'on poursuivait indéfiniment, « jusque dans l'éternité », les observations et vérifications. La conséquence extrême et paradoxale en est l'impossibilité de concevoir le progrès scientifique comme une approche de la vérité).

    On peut comparer cette situation à la complémentarité quantique (onde-particule) pour laquelle les deux descriptions sont complémentaires et incompatibles. On peut mesurer la position ou l'impulsion, mais les deux sont incompatibles. Mesurer l'une puis l'autre ne permet pas de connaître les deux à postériori. La réalité phénoménale est en quelque sorte une coupe actualisée donnant une représentation partielle de la réalité empirique. Chaque coupe est exclusive et ne permet pas de reconstituer une vue en perspective à travers l'image de plusieurs coupes différentes, comme en architecture.La non-représentabilité est due au fait qu'il n'est ni possible de connaître toutes les parties simultanément en totalité ni de reconstruire à postériori la globalité de la réalité empirique à partir des coupes partielles que sont les réalités phénoménales. 

    "La réalité empirique est la structure limite engendrée par l'ensemble des entités conceptuelles que nous utilisons pour être à même de décrire et de prédire les réalités phénoménales. Elle est donc liée directement aux capacités conceptuelles du cerveau humain même si elle reste hors de portée de d'une compréhension globale. C'est une limite à l'infini qui ne peut qu'être approchée par nos représentations finies tendant vers elle. 

    Cela peut rappeler le monde- Ω de Bonsack avec ici une infinité de chemins limites incompatibles. Pour le solipsisme convivial, la réalité phénoménale est le résultat de l'accrochage de chaque sujet à une branche particulière de la fonction d'onde de l'univers, actualisée éventuellement de manière différente, sans que cette différence puisse être perceptible. La fonction d'onde de l'univers est une des outils permettant de conceptualiser la réalité empirique, mais celle-ci ne doit pas lui être identifiée. Ce n'est qu'un des outils, issu d'une des théorie possibles pour modéliser la réalité phénoménale qui n'est pas conceptuellement épuisée par cette notion de fonction d'onde. La réalité empirique est en effet l'ensemble des conditions rendant possible l'émergence des réalités phénoménales, qui sont contraintes par la structure de l'esprit humain (dont l'induction au sens faible, le fait que certaines associations passées se reproduisent). 

     

         c) La nécessité d'un troisième niveau.

    On peut alors se demander si la réalité empirique et la réalité phénoménologique épuisent le monde. 

    La physique contemporaine a progressivement abandonné l'exigence de représentabilité des concepts car il est impossible de se forger une image de nombre d'entre eux (espace-temps courbe de la relativité générale, concept d'état superposé, enchevêtrement des états de deux systèmes ayant interagi, non-séparabilité, concepts purement mathématiques de la théorie des super cordes). La réalité empirique au sens envisagé ici n'est pas représentable dans sa globalité, mais elle reste conceptualisable, la preuve, nous sommes capables d'en parler et d'en décrire les effets. Dans la conception du solipsisme convivial, c'est le fait que la représentation peut revêtir des formes différentes selon les sujets qui crée la diversité des réalités phénoménales individuelles à partir d'une réalité empirique unique. Cette unicité provient de ce que la structure de notre cerveau, supposée identique pour tous les hommes, détermine ce qui est conceptualisable. Les réalités phénoménologiques sont multiples car il est nécessaire de faire un choix de point de vue pour se représenter la réalité empirique (pourquoi? cela reste hors du champ de notre compréhension. Est-ce dû à la structure de notre cerveau...?). Tous sont potentiellement autorisés et il n'y a aucune raison pour que ce choix soit identique pour tous les sujets. 

    La réalité empirique est donc l'ensemble des potentialités actualisables; elle est asymptotiquement descriptibles par les entités que nous utilisons pour décrire et prédire les réalités phénoménales. Directement liée aux capacités conceptuelles du cerveau humain, c'est une construction pragmatique indispensable. Mais si on essaye de la penser comme un tout, c'est un monde étrange, non représentable, aux propriétés contre-intuitives. 

    Cette réalité empirique est inaccessible aux capacités conceptuelles d'un animal dont la conceptualisation est vraisemblablement très différente de la nôtre. Si nous pensons que la nôtre est meilleure et plus complète, alors il est possible d'envisager une capacité de conceptualisation qui serait supérieure à la nôtre. Croire l'inverse serait retomber dans la naïveté de certains savants 19è siècle qui s'imaginaient avoir tout découvert ou postuler comme Church que le cerveau humain est arrivé à un stade d'évolution qui lui permet de conceptualiser tout ce qui est conceptualisable, comme les fonctions récursives partielles suffisent à représenter toutes les fonctions calculables. Il est difficile de donner un sens à la thèse selon laquelle notre conceptualisation est meilleure et plus complète que celle du singe par exemple. Elle suppose qu'on puisse définir la notion "d'entité conceptualisable" (dans l'absolu) sans référence à un type de cerveau particulier comme celui de l'homme ou du singe. S'affranchir des limites du cerveau humain pour définir une notion qui lui est aussi fortement attachée semble une entreprise vouée à l'échec. Si on admet cette possibilité à titre d'hypothèse, la conséquence est que quelles que soient les évolutions futures de l'homme, des machines ou d'éventuels extraterrestres, aucune capacité cognitive ne pourra construire de concepts inaccessibles au cerveau humain. Cela rappelle les croyances anthropomorphes successivement réfutées (position de la terre au centre de l'univers...) pour être plausible.

    On peut donc défendre l'idée selon laquelle il y a des choses non conceptualisables, pour nous ou pour tout système perceptif. Ce qui ne veut pas dire "qu'il existe des choses non conceptualisables" car cette manière d'en parler aurait une signification trop proche de nos concepts. On pourrait l'exprimer en disant que ce qui est conceptualisable n'épuise pas "tout", sans préciser ce qu'est ce "tout".

    Cela définit un troisième niveau indispensable, dont on ne peut pas parler, qui est en même temps inexprimable. On peut le formuler de manière négative: "nos concepts n'épuisent pas tout". On ainsi introduit trois niveaux: le représentable, le conceptualisable et le non conceptualisable.

     

       d) Les trois niveaux.

              1) Quelque chose, dont on ne peut pas parler, mais, s'il le faut, qu'on ne peut caractériser que négativement. Dire qu'il existe est impropre mais le mentionner est déjà une sorte d'existence. Et c'est là que s'arrête le langage. C'est l'inconnaissable, domaine non conceptualisable pour l'homme, comme le domaine d'opérateur quantique est non conceptualisable pour un singe. Sa nécessité provient du refus de considérer que le conceptualisable épuise tout. 

              2) La réalité empirique qui est l'ensemble des potentialités dont l'actualisation, soumise aux contraintes qui les caractérisent, engendre les perceptions. Celles-ci ne s'actualisent que par l'action de la conscience individuelle au sein de la réalité empirique unique et virtuelle. Inconnu connaissable, la réalité empirique matérialise d'une certaine manière les conditions a priori de nos perceptions. Elle n'existe pas indépendamment de l'homme et c'est bien l'homme qui la crée. Mais l'homme ne fait rien pour la créer. Elle n'est que le moule de ses perceptions au sein de l'inconnaissable (la réalité empirique d'un animal est très différente et elle n'existe pas pour l'homme).

              3) Les perceptions qui constituent la réalité phénoménale qui sont différentes chez chacun et sont l'apparence que prend la réalité empirique pour les individus. C'est le connu. Les perceptions ne sont pas neutres et objectives mais nous sont livrées à travers tous les filtres conceptuels du langage, de la culture, de l'éducation et les filtres physiques de nos sens.

    "Nous ne fabriquons pas la réalité phénoménale directement à partir de la réalité empirique mais par actualisation à travers le moule de la réalité empirique, d'une portion de l'inconnaissable".

     

    5) Conclusion.

    La réflexion sur les limites de la connaissance nous a éloigné de l'environnement rassurant des théories scientifiques pour s'approcher de la métaphysique et de positions hors de portée de toute justification empirique et de nature purement philosophique. Elles ne sont pas vaines et ont une valeur liée à la réflexion pure qui permet de se forger pour soi-même une conception du monde, même si elle est au-delà de toute validation. C'est un objectif intéressant si on s'astreint à respecter une rigueur de raisonnement et une cohérence logique. Il peut apporter une réponse possible à certaines des énigmes présentées au cours des articles de cette réflexion sur les limites de la connaissance. 

    La conception qui est exposée, complétée par le solipsisme convivial est "ma lecture " du livre de Hervé Zwirn, qui est conforme aux exigence de la physique quantique au sens large. Elle est directement inspirée par les solutions actuellement acceptées du problème de la mesure quantique. Elle échappe de ce fait aux objections soulevées par la physique moderne contre le réalisme traditionnel. Elle rejette à la fois le réalisme métaphysique et le réalisme épistémique mais ce n'est pas une conception idéaliste pure. Elle permet de comprendre pourquoi plusieurs théories apparemment contradictoires ou incommensurables peuvent néanmoins décrire correctement la réalité phénoménale en évitant la fausse question du référent réel des entités théoriques ou le concept illusoire de vérité approximative. 

    La sous-détermination des théories par l'expérience est une conséquence du fait que nos théories ne sont que des algorithmes utiles pour prédire la réalité phénoménale. En conséquence, l'argument no miracle (du succès empirique) s'évanouit  si on considère que les théories ne s'appliquent qu'à une partie de la réalité phénoménologique qui s'y prête et que de vastes portions leur échappent et leur échapperont toujours, et d'autre part, que leur réussite provient de de leur respect de la structure de la réalité empirique.

    L'intersubjectivité s'explique si on croît à l'unicité de la réalité phénoménale et que les perceptions de différents sujets sont identiques. Le formalisme quantique fournit une explication cohérente même en l'absence de réalité externe préexistante. Mais si on suppose que qu'il y a autant de réalités phénoménales que de sujets différents, le solipsisme convivial permet de comprendre pourquoi il est impossible d'en prendre conscience. L'intersubjectivité est alors une illusion que nous n'avons aucun moyen de dissiper. 

    La résistance du réel provient de l'incapacité de nos structures mentales à élaborer une construction théorique formelle et une construction perceptuelle qui soient conjointement consistantes. 

    Cette conception emprunte certains traits à des positions opposées. Partiellement réaliste (tout n'est pas création de nos esprits), elle n'admet pas l'existence d'une réalité indépendante de l'homme. Les réalités empiriques et phénoménales n'existent que relativement à nos capacités perceptives (donc leur existence est de nature différente de celle postulée par les conceptions réalistes traditionnelles). L'inconnaissable n'a aucun attribut et on ne peut pas dire qu'il existe indépendamment de l'homme, conception partiellement idéaliste en ce sens que l'esprit humain y joue un rôle essentiel bien qu'il n'en soit pas le seul ingrédient: "L'esprit et le monde construisent conjointement l'esprit et le monde" (Putnam, cité en exergue). Cette conception fait jouer aux théories le rôle d'algorithme (forme d'instrumentalisme), mais le dépasse en proposant une explication de la réussite prédictive des algorithmes à travers un réalisme structurel. Et enfin, elle s'inscrit dans une perspective néo-kantienne.

     

    Arrivé au terme de mes articles sur "les limites de la connaissance", je pense qu'une relecture depuis le début après un certain temps de réflexion permettra de nouveaux commentaires et de mûrir une propre conception qui ne sera sans doute jamais définitive.

     

     

     

     

     

     

    Pin It

    votre commentaire
  •  

    J'ai été très intéressé par ce magistral développement de "philocours.com" qui illustre bien mes réflexions  de mes articles sur les limites de la connaissance en ce qui concerne les théories scientifiques et le réel. Voir à ce sujet mon dernier article en préparation: les limites de la connaissance 6-8) Conclusion- la cécité empirique qui paraîtra prochainement.

     

    Les théories scientifiques décrivent-elles la réalité ?

    page créée le 13/08/2004

     
     

    liens associés

    Plan

    Introduction

    I- La conception naïve de la théorie scientifique : les theories sont issues de l’experience

     

     

     

     

    A- L’inductivisme naïf.
    1) L’observation sans préjugés (ou subjectivité versus objectivité).
    2) Induction et déduction.
    3) L’inductivisme scientifique.
    B- Les faiblesses de l’induction
    1) difficulté purement logique : dans une inférence inductive, la vérité des prémisses ne garantit pas la vérité de la conclusion
    2)Deuxième difficulté : le choix (et la sélection) des données.
    3) Pas d’observation sans théorie
    II- Les théories ne precedent-elles pas l’expérience ?

     

     

     

     

     

    1) Critique de l’inductivisme naïf : Hempel, Eléments d’Epistémologie.
    2) Popper et le falsificationnisme (l’expérience est réfutatrice, mais pas vérificatrice)
    III- La sous-détermination des théories par l’expérience : le holisme scientifique

     

     

     

     

     

    1) Faut-il avoir confiance dans le critère de falsifiabilité ?

    2) Le holisme scientifique (Quine)

    3) La science est-elle vraie?

    Note historique  : Galilée et Copernic, ou : croyaient-ils que la terre tournait ?
    Note historique : la formation du concept d'atome au 19e.
    Conclusion

     

     

     


     

    Introduction

    Nous avons soupçonné, à la fin de cours-histoire, que l’histoire n’est pas une science, car elle ne nous dit pas comment est le passé en soi, mais elle le reconstruit. Elle est, a-t-on dit, subjective, et non objective. Nous avons donc présupposé que la science, elle, se caractérise par une objectivité totale, et que les faits qu’elle décrit nous disent comment est réellement le monde en dehors de nous. Elle est le modèle supposé de la connaissance " vraie " du monde.

    NB : C’est ce que croit le sens commun, cf. les pub qui se servent du cachet " c’est scientifique ", pour nous faire acheter le produit. " C’est scientifique " est synonyme de " c’est prouvé ", " c’est vrai ", " on ne peut pas le réfuter ", etc.

    Sous sa forme raffinée, cette opinion commune prend le nom de scientisme : théorie selon laquelle la science nous donne une vérité absolue et indiscutable ; et qui a pour conséquence le rejet de toutes les autres formes culturelles (l’art, la religion, la philosophie), ainsi que les autres mentalités, hors du domaine de la connaissance.

    Origine : Auguste Comte.

    Or, les faits scientifiques sont-ils vraiment, contrairement aux faits historiques, non construits par l’homme ? Sont-ils entièrement objectifs et " vrais " ? Nous allons y répondre en réfléchissant sur les questions suivantes : Comment faisons-nous l’acquisition des théories scientifiques ? Les déduisons-nous directement de l’expérience, ou bien la précèdent-elles ? I.e., sont-elles la copie conforme du réel, ou bien une reconstruction de ce réel ?

    Mais qu’est-ce qu’une théorie scientifique ?

    Prenons par exemple la théorie astronomique suivante : " les planètes tournent selon des ellipses autour de leur soleil ".

    Une théorie scientifique :

    1) se présente donc sous la forme d’un énoncé universel ; elle porte sur la totalité des événements d’un type particulier, en tous lieux et en tout temps : ainsi, toutes les planètes, quelles qu’elles soient, tournent toujours autour de leur soleil suivant une orbite elliptique ;

    2) explique le comportement des choses (connaissance du monde, description du réel)

    3) prédit ce qui va arriver (on ne connaît pas seulement pour connaître mais aussi pour agir ; la théorie scientifique n’est donc pas une connaissance désinteressée contrairement à la philosophie et au sens le plus ancien de théorie).

    I- La conception naïve de la théorie scientifique : les theories sont issues de l’experience

     

     

     

     

    A- L’inductivisme naïf.
    1) L’observation sans préjugés (ou subjectivité versus objectivité).L’opinion (c’est bien une opinion car on ne sait pas encore si elle est fondée) la plus répandue concernant l’élaboration des théories scientifiques est celle selon laquelle on doit partir de l’observation sans préjugé. Le scientifique idéal doit rendre compte fidèlement de ce qu’il voit, entend, etc., en accord avec les situations qu’il observe, et doit être dénué de tout préjugé. Il doit se laisser conduire par l’expérience, par les faits. C’est le seul moyen pour ne pas projeter ses croyances, préjugés, intérêts, dans le réel.

     

    A. B. Wolfe, " Functional Economics ", in The Trend of Economics, R.G. Tugwell éd., Alfred Knopf, New York, 1924 : le scientifique idéal est un observateur sans préjugés (in Chalmers, op. cit., pp.34-35).

    Essayons d’imaginer un esprit doué d’une puissance et d’une étendue surhumaines, mais dont la logique soit semblable à la nôtre. S’il recourait à la méthode scientifique, sa démarche serait la suivante : en premier lieu, tous les faits seraient observés et enregistrés, sans sélection, ni évaluation a priori de leur importance relative. En second lieu, les faits observés et enregistrés seraient analysés, comparés et classés, sans hypothèses ni postulats autres que ceux qu’implique nécessairement la logique de la pensée. En troisième lieu, de cette analyse des faits, seraient tirés par induction des énoncés généraux affirmant des relations de classification ou de causalité entre ces faits. Quatrièmement, les recherches ultérieures seraient déductives tout autant qu’inductives, et utiliseraient les inférences tirées d’énoncés généraux antérieurement établis. "

    Autre texte : Claude Bernard, Introduction à l’étude de la médecine expérimentale, Ed Delagrave, :

    Si cette opinion est fondée, elle a pour conséquence l’inductivisme = manière empiriste de rendre compte de l’élaboration/origine des théories scientifiques. Le premier à l’avoir soutenue : F.Bacon. Les énoncés universels sont issus de l’observation d’une multitude de cas particuliers. C’est donc l’expérience qui précède la théorie, et en est l’origine et la base.

    Pour savoir si l’opinion selon laquelle la science se caractérise par une observation sans préjugés est fondée, nous allons analyser la nature et la valeur du raisonnement inductif.

     

     

     

     

    2) Induction et déduction.

    Le raisonnement inductif s’oppose au raisonnement déductif.

     

     

     

     

     

    a) L’induction 

    Raisonnement qui consiste à partir des cas particuliers et à généraliser à partir d’eux.

    Exemple : 

    (1) t1 est (y), t2 aussi, t3 aussi, … tx (y) 

    (2) donc tous les t sont verts.

     

    b) La déduction 

    Raisonnement qui part du général pour aller vers le particulier.Et plus précisément, qui part de propositions tenues pour vraies pour en tirer des inférences.

     

    Exemple :

    (1) tous les hommes sont mortels

    (2) or, Socrate est un homme

    (3) donc Socrate est mortel

    NB : ce serait un raisonnement non valide si on avait dit " nombreux " au lieu de " tous les ".

    En général, on dit que la déduction est un raisonnement seulement formel, i.e., qui n’a rien à voir avec le réel ; il est l’objet de la " logique ", science du raisonnement. Ce que ne permet aucunement de savoir la déduction, c’est si les prémisses sont vraies ou non. Tout ce qu’elle nous permet de dire, c’est que si elles sont vraies, alors, la conclusion l’est aussi (i.e., de déduire des énoncés à partir d’autres énoncés).

    Exemple :

    (1) tous les chats ont cinq pattes

    (2) Gromatou est mon chat

    (3) Gromatou a cinq pattes

    Est un raisonnement valide, car si (1) et (2) sont vraies, alors, (3) l’est aussi.

     

     

     

     

    3) L’inductivisme scientifique.

    Voyons maintenant en quoi consiste l’inductivisme scientifique (inductivisme un peu plus sophistiqué que celui du sens commun), qui est, nous l’avons dit, le modèle le plus couramment présenté pour expliquer la découverte et l’élaboration des théories scientifiques.

     

     

     

     

     

     

    (in Chalmers, Qu'est-ce que la science ?,Ed la découverte, Paris,1987p.28)

      fig1, p.28

     

     

     

     

     

     

    a) Première phase : de l’observation à la théorie

    1-Point de départ : collection, par l’observation, de tous les faits

     

    2-ensuite, généralisation des faits observés, obtenue par induction

    Exemple : On chauffe à de multiples reprises du métal, et on constate qu’à chaque fois, il se dilate ; on en conclut que le métal chauffé se dilate.

    Le passage des prémisses à la conclusion est rendu légitime par trois conditions :

    1- le nombre de constatations formant la base de la généralisation doit être élevé (les faits doivent être collectés en grand nombre)

    En effet, on ne saurait légitimement conclure à la dilatation de tous les métaux chauffés sur la base d’une seule observation d’une barre de métal qui se dilate ; de même, on ne va pas conclure que tous les Australiens sont alcooliques si on observe un individu de cette nationalité soumis à cette dépendance. Il ne faut donc jamais se hâter pour formuler des conclusions !

    2- les observations doivent être répétées dans une grande variété de conditions

    Il ne suffit pas d’observer à de nombreuses reprises une barre de métal unique, ou de garder sous observation à longueur de temps un australien se saoulant toutes les nuits ou tous les matins. Il faut, pour que la généralisation soit légitime, que les conditions de l’observation soient différentes. Il faut chauffer des métaux différents, des barres de fer longues ou courtes, etc., à haute et basse pression, haute et basse température. La généralisation ne sera légitime que si le métal se dilate dans toutes ces conditions

    3- aucun énoncé d’observation ne doit entrer en conflit avec la loi universelle qui en est tirée

    Selon l’inductiviste, la science se base donc sur le principe d’induction, qui est le suivant : " si un grand nombre de A ont été observés dans des circonstances très variées, et si on observe que tous les A sans exception possèdent la propriété B, alors tous les A possèdent la propriété B " .

     

     

     

     

     

    b) Dernière phase : la déduction.

    Une fois en possession de lois et de théories universelles, un scientifique devra en tirer diverses conséquences qui seront des explications et des prédictions. Par là, on revient à l’expérience initiale, mais à travers la théorie, et par une déduction. Chaque prédiction remplie de succès est une confirmation expérimentale de la théorie.

     

    Exemple :

    (1) de l’eau à peu près pure gèle à environ 0°C (si on lui en laisse le temps)

    (2) le radiateur de ma voiture contient de l’eau à peu près pure

    (3) si la température tombe en dessous de 0°C, l’eau du radiateur de ma voiture va geler (si on lui en laisse le temps)

    Une théorie scientifique est donc, dans cette conception, toujours en relation directe avec l’expérience, qui a le premier et le dernier mot.

     

     

     

     

     

    B- Les faiblesses de l’induction
    1) difficulté purement logique : dans une inférence inductive, la vérité des prémisses ne garantit pas la vérité de la conclusion Exemple : la dinde inductiviste de Russell

     

    Dès le matin de son arrivée dans la ferme pour dindes, une dinde s’aperçut qu’on la nourrissait à 9h00 du matin. Toutefois, en bonne inductiviste, elle ne s’empressa pas d’en conclure quoi que ce soit. Elle attendit donc d’avoir observé de nombreuses fois qu’elle était nourrie à 9h00 du matin, et elle recueillit ces observations dans descirconstances fort différentes, les mercredis et jeudis, les jours chauds et les jours froids, les jours de pluie et les jours sans pluie. Chaque jour, elle ajoutait un nouvel énoncé d’observation à sa liste.

    Elle recourut donc à un raisonnement inductif pour conclure : " je suis toujours nourrie à 9h00 du matin ". Or, cette conclusion se révéla fausse quand, un jour de noël, à la même heure, on lui tordit le cou.

    Leçon de l’histoire : le raisonnement inductif se caractérise donc par le fait que toutes les prémisses peuvent être vraies et pourtant mener à une conclusion fausse. Si à tel moment la dinde a constaté qu’elle a été nourrie, il se peut toujours que le moment d’après, elle ne le soit pas. L’induction est un raisonnement non fondé logiquement.

    Problème : si la science est fondée sur une démarche inductive, alors, elle n’est pas fondée !

     

     

     

     

     

    2)Deuxième difficulté : le choix (et la sélection) des données.

    De plus, la clause des " circonstances fort variées ", à laquelle tiennent tant les inductivistes, est elle-même criticable . En effet, ce que les inductivistes ignorent, ou ne rendent en tout cas nullement compte, c’est que s’il y a des données à recueillir, et ce, dans des circonstances fort variées, toutes les données n’ont pas d’intérêt, de même que toutes les circonstances.

     

     

     

     

     

     

    On ne peut observer sans " préjugés ", et le scientifique qui essaierait de le faire, n’aboutirait à aucun résultat : Chalmers, op. cit., pp.66-67 –un exemple d’expérimentation en laboratoire (Hertz).

    imaginons Heinrich Hertz, en 1888, effectuant l’expérience électrique qui lui permit d’ être le premier à produire et à détecter des ondes radio. S’il avait été parfaitement innocent en effectuant ces observations, il aurait été obligé de noter non seulement les lectures sur différents mètres, la présence ou l’absence d’étincelles à différents lieux critiques dans les circuits, etc., mais aussi la couleur des mètres, les dimensions du laboratoire, le temps qu’il faisait, la pointure de ses chaussures, et un fatras de détails sans aucun rapport avec le type de théorie qui l’intéressait et qu’il était en train de tester. (Dans ce cas particulier, Hertz testait la théorie électro-magnétique de Maxwell pour voir s’il pouvait produire les ondes radio qu’elle prédisait). "

     

     

    L’inductiviste dira alors qu’il faut recueillir seulement les faits significatifs. Mais ce dont alors il ne rend justement pas compte, c’est qu’un fait ne sera significatif qu’en fonction d’une théorie ou d’une question que je pose.

    Cf. Hempel : " en bonne logique, on ne peut qualifier de significatifs des faits ou des découvertes empiriques que par rapport à une hypothèse donnée ". Il est impossible de recueillir tous les faits significatifs, si on ne connaît pas les hypothèses par rapport auxquelles ces données prendront signification.

     

     

     

     

     

    Cf. suite de l’extrait de Chalmers : " l’un des facteurs que j’ai écarté comme nettement " hors sujets " était en fait au cœur même du sujet. La théorie testée avait pour conséquence que la vitesse des ondes radio doit être identique à celle de la lumière. Or, quand Hertz mesura la vitesse de ses ondes radio, il trouva à plusieurs reprises qu’elle différait de celle de la lumière. Il ne parvint jamais à résoudre cette énigme, dont la cause ne fut comprise qu’après sa mort. Les ondes radio émises par son appareil se réfléchissaient sur les murs de son laboratoire, revenaient vers son appareil et interféraient avec ses mesures. Les dimensions du laboratoire étaient bel et bien un facteur essentiel ".

     

     

     

     

     

     

    3) Pas d’observation sans théorie

    On peut donc répondre aux inductivistes qu’ils ont une conception très naïve des rapports entre théorie et expérience. L’idée d’une expérience indépendante de toute théorie, qui serait un simple enregistrement neutre, n’a pas de sens. Toute observation ou expérience présuppose des connaissances qui déterminent ce que nous observons.

     

    Exemples :

    Supposons l’énoncé suivant :

    (1) " regardez, c’est terrible, le vent pousse le landau du bébé vers la falaise ! ". Cet énoncé, qui paraît être une pure observation, suppose des théories, et des connaissances : on sait que le bébé sera écrasé s’il tombe de la falaise, et que c’est le vent qui pousse le landau.

    Supposons maintenant l’énoncé suivant :

    (2) " le faisceau d’électrons est attiré vers le pôle magnétique de l’aimant ". Cet énoncé est du même ordre que le premier, mais suppose la maîtrise de théories plus complexes : il faut savoir ce que sont les propriétés de l’aimant, ce que signifient " électron ", " aimant ", etc.

    (3) Prenons encore un exemple scientifique : le fait de regarder à travers un téléscope : le non expert ne verra qu’un amas informe de tâches noires et brillantes, l’expert verra autre chose (il " lira ", grâce à son travail, l’image).

    (4) Galilée, quand il a fait rouler des boules sur un plan incliné, n'a pas découvert la loi du mouvement : il fallait qu'il ait déjà eu l'idée de sa théorie, avant de faire cette expérience.

    NB : l'expérience a ici le rôle de test de la théorie, pas de découverte. Dans l’expérimentation, qui est toujours l'expérience au sens de test d'une théorie, il y a donc toujours l’empreinte d’une théorie. Exemple : l’expérimentation en chimie est la matérialisation d’une hypothèse. L’expérience scientifique n’est possible qu’avec un savoir théorique. On ne passe pas de l’expérience à la théorie scientifique puisqu’il faut déjà avoir la théorie pour faire l’expérience scientifique.

    Commentaire de tous ces exemples : ce que voient les observateurs, les expériences subjectives qu’ils vivent en voyant un objet ou une scène, n’est pas déterminé seulement par les images qui se forment sur leur rétine, mais aussi par l’expérience, le savoir, les attentes et l’état général de l’observateur. Sinon, ils verraient tous exactement la même chose. Quand on observe quelque chose, c’est avec nos propres expériences que l’on a un contact immédiat, pas avec l’image qui se forme sur notre rétine. Attention : cela ne signifie pas que nous voyons ce qui nous plaît, mais que ce que nous voyons n’est pas déterminé par ce qui est observé. Il en est exactement de même en science : le scientifique qui fait une expérimentation a un rapport immédiat avec des théories, pas avec le monde tel qu’il est en soi.

    Enjeu : on peut donc se demander si la différence entre expérience et théorie a beaucoup de sens : toute expérience est immédiatement théorique (qu'elle soit commune ou scientifique).

    Exercice Kant (annexe III).

    Conclusion : le modèle inductiviste en science est dit " naïf " car il ne semble pas pouvoir rendre compte de l’élaboration des théories scientifiques, ni en général de la façon dont l’esprit humain acquiert ses connaissances, ses représentations du monde. Il est en effet doublement erroné : à la fois logiquement, et au sens où aucune connaissance, aucune théorie ne peut être issue de l’observation. Il semblerait que ce soit plutôt la théorie qui précède l’expérience.

    Dès lors, ne faut-il pas recourir à un autre modèle ? Nous avons dit que le contraire de l’induction, c’est la déduction : peut-être que la découverte des théories se fait alors de manière plutôt déductiviste ?

     

    II- Les théories ne precedent-elles pas l’expérience ?

     

     

     

     

    1) Critique de l’inductivisme naïf : Hempel, Eléments d’Epistémologie.

     

    Texte d’Hempel, Eléments d’épistémologie, Chapitre 2.

     

    Travail élèves : comment Semmelweis élabore-t-il sa théorie ? En quoi cette découverte ne peut-elle être expliquée par le modèle inductiviste naïf ?

    Voici comment a lieu la recherche scientifique :

     

     

     

     

    a) Le problème.

    Le problème qui s’est posé au médecin Semmelweis est le suivant : un pourcentage élevé de femmes qui accouchaient dans son service contractaient une affection grave et souvent fatale, la " fièvre puerpérale ". Dans le service d’à côté, pas de problème.

     

     

     

     

     

     

    b) La recherche d’hypothèses

    Pour chercher la ou les causes de cette fièvre mortelle, Semmelweis ne collectionne pas des observations, mais des hypothèses. En effet, il commence par examiner les différentes explications qui avaient cours à l’époque (=solutions ou explications possibles) :

     

    -les influences épidémiques (cela impliquerait que l’épidémie est sélective)

    -l’entassement (or, pas de différence entre les deux services)

    -les blessures causées par la maladresse des étudiants

    -explication psychologique (le prêtre)

    Finalement, un accident lui fit découvrir la cause de ce phénomène : empoisonnement du sang dû à la matière cadavérique. Les étudiants ne se lavaient pas les mains avant l’accouchement, alors qu’ils avaient manipulé des cadavres.

     

     

     

     

     

    c) Mise à l’épreuve de son idée/hypothèse

    Son hypothèse est confirmée en mettant à l’épreuve sa conséquence logique. La question que se pose un scientifique, une fois élaborée l’hypothèse qui pourrait résoudre le problème (conjecture) est celle de savoir s’il y a des effets directement observables qui se produiraient si l’hypothèse était vraie. Si la conjecture est bonne, alors, certains événements doivent se produire et doivent être observables.

     

    (1) si H est vraie, I l’est également

    (2) mais I n’est pas vraie

    (3) donc H n’est pas vraie

    Exemple :

    (1) si ce sont des étudiants en médecine qui provoquent la septicémie, alors, la diminution du nombre d’étudiants doit provoquer la baisse de la septicémie ;

    (2) or, ce n’est pas ce qui se produit,

    (3) donc, l’hypothèse est fausse.

    NB : plus tard, il découvrit que son hypothèse était elle aussi fausse ; la matière en décomposition d’organismes vivants pouvait elle aussi, en effet, causer cette fièvre. Cela signifie que même si plusieurs implications d’une hypothèse ont été confirmées par un test minutieux, l’hypothèse peut être fausse.

     

     

     

     

     

    d) Le modèle hypothético-déductif –comparaison avec le modèle inductiviste

     

     

     

     

     

     

     

    Modèle inductiviste :

    1-expérience

    2-généralisation

    3-théorie

    Modèle hypothético-déductif :

    1- rencontre d’un problème

    2- formulation d’hypothèses / théories

    3- recours à l’expérience (test de l’hypothèse)

    4- réfutation ou corroboration de l’expérience

     

    Contrairement au modèle inductiviste, c’est la théorie qui précède l’expérience. Les hypothèses et théories scientifiques ne sont nullement dérivées des faits observés, mais inventées pour en rendre raison.

    (NB : nous sommes ici à l’opposé de Descartes et de tous les rationalistes du 17e, pour lesquels, selon " l’imagination est la folle du logis ", et à l’opposé de la connaissance : ici, l’imagination est créatrice –d’hypothèses permettant de décrire le réel).

    L’expérience (théorisée !) ne sert que de procédé de validation de la théorie. Si on a un contre-exemple, alors, l'hypothèse est réfutée.

    NB : Bien sûr, on part du réel mais du réel comme problème (on en revient donc toujours au même point : à savoir, que la théorie précède et détermine l’expérience, car quelque chose ne peut être problématique qu’à la lumière d’une théorie).

    Il faut avoir une idée préalable de ce qu’on recherche. L’observation n’est pas neutre, mais elle doit être dirigée par une hypothèse préalable. L’hypothèse précède donc toujours l’observation. Dès lors, il est faux de dire que la science consiste à collecter des faits afin d’en tirer une généralité.

    NB : de nouveau, note sur l'imagination : les hypothèses ne sont pas inventées de toute pièce par l'imagination, mais elles sont formulées de telle façon qu’on puisse faire une expérience pour la réfuter.

    On peut donc substituer le modèle hypothético-déductif au modèle inductiviste naïf.

     

     

     

     

    2) Popper et le falsificationnisme (l’expérience est réfutatrice, mais pas vérificatrice)

    Mais les expériences peuvent-elles vraiment nous dire si notre théorie est vraie (la " prouver ")? Cela semble contestable, puisqu’on a vu avec Hempel qu'une expérience peut très bien confirmer l'hypothèse, alors que cette hypothèse est fausse.

     

     

     

     

     

     

    a) Falsifiable signifie d'abord réfutable et s'oppose à vérifiable.

    Thèse de Popper : ce qui fait la spécificité des théories scientifiques, c’est qu’elles sont falsifiables ou réfutables, non pas vérifiables.

     

     

     

     

     

     

     

    Le raisonnement type de la démarche scientifique est le modus tollens.

    si H alors E et que non E alors non H modus tollens – valide

    si H alors E et que E alors H modus ponens – non valide

    Si on n'a pas le droit, logiquement, de tirer des théories de l’observation, on peut en déduire qu’elles sont fausses. En effet, le premier raisonnement est valide : cela signifie bien qu'on peut réfuter une théorie en montrant que ce qu’elle dit devoir se produire ne se produit pas, mais on ne peut pas vérifier une théorie, puisque ce n’est pas parce qu’il se produit ce qu’elle dit devoir se produire que l’hypothèse est la bonne.

     

     

     

     

     

     

    b) Exemples d'énoncés falsifiables et non falsifiables; la falsifiabilité comme clarté

    Exemples :

     

    (1) il ne pleut jamais le mercredi

    (2) soit il pleut, soit il ne pleut pas le mercredi

    (1) est falsifiable parce qu’il suffit qu’il pleuvre un mercredi pour qu’il soit falsifié

    (2) non falsifiable, car vrai, quel que soit le temps qu’il fait

    Un énoncé infalsifiable est un énoncé qui ne peut jamais entrer en conflit avec une observation ; conséquence : ne nous apprend rien sur le monde. Une loi scientifique doit donc être du genre (1).

    Exemple :

    (3) " toutes les planètes décrivent des ellipses autour du soleil " :

    cet énoncé est falsifiable, car il exclut les orbites carrées ou ovales

    Une théorie n’est scientifique que si elle est falsifiable : i.e., on doit connaître quel est l’événement qui, s’il se produisait, nous mènerait à renoncer à l’hypothèse, ou à moins, à la transformer. L’exigence essentielle de la démarche scientifique n’est donc pas la vérité, mais la clarté dans la formulation des hypothèses, puisque cette clarté est une condition nécessaire pour déterminer quels sont les événements observables qui permettent de la falsifier.

     

     

     

     

     

    c) La falsifiabilité comme critère de démarcation entre la science et les pseudo-sciences.

    La falsifiabilité va jouer, pour Popper, le rôle de démarcation entre les théories scientifiques et non-scientifiques. Cf. psychanalyse, astrologie, etc. : ce sont des pesudo-sciences car on ne peut pas les réfuter (cf.cours inconscient).

     

    Plus une théorie est falsifiable, meilleure elle est.

    Exemple :

    (4) " Mars se déplaça autour du soleil selon une ellipse "

    (3) " Toutes les planètes se déplacent autour du soleil selon une ellipse "

    (3) est plus falsifiable que (4), puisqu’elle la contient ; de plus, si (4) n’est pas falsifiable, cela n’implique pas que (3) ne l’est pas.

     

     

     

     

     

    d) La science n'est pas vraie mais au mieux vraie provisoirement.

    Donc, dans la démarche scientifique, on ne " prouve " pas les théories. Dans le meilleur des cas, on les réfute. Ainsi, le progrès scientifique consiste à s’apercevoir des erreurs et non à accumuler des certitudes. Une théorie non falsifiée n’est pas " vraie ", ou, si elle est vraie, elle ne l’est que provisoirement. Une théorie qui passe victorieusement les tests expérimentaux est dite confirmée ou bien corroborée. Les théories scientifiques sont des hypothèses, ie, des essais ou tentatives d'explication du monde.

     

     

     

     

     

     

    e) Modèle d'explication falsificationniste.

     

     

     

     

     

     

     

    Conclusion II : on a donc vu qu'il est plus fondé logiquement de dire que les théories scientifiques précèdent l'expérience, plutôt que de dire qu'elles en sont issues. Nous avons détruit, en effet, le présupposé de l'inductivisme naïf, qui est celui de l'existence d'une expérience ou d'une observation "neutre", sans préjugés, sans aucun a priori. Au bout du compte, on a remis en question la distinction même entre théorie et expérience : en effet, il n'y a pas d'expérience sans théorie.

     

    III- La sous-détermination des théories par l’expérience : le holisme scientifique

    Ce que je vais montrer ici c’est que le modèle de Popper est lui-même contestable. L'expérience ne peut même pas réfuter /falsifier une théorie.

     

     

     

     

    1) Faut-il avoir confiance dans le critère de falsifiabilité ?

    a) 1ère difficulté : si le test expérimental doit permettre de falsifier la théorie, ce test doit être totalement indépendant de la théorie.

    En effet, sinon, d'abord, l'expérimentation sera tout aussi faillible que la théorie, et ne sera pas capable de confirmer ou de réfuter la théorie; (j'insiste : c'est une expérimentation, non une expérience " brute ", qui est mise en rapport avec la théorie); et ensuite, ce sera un cercle vicieux : on chercherait en effet à confirmer la théorie … par la théorie elle-même!

     

     

     

     

     

     

    b) 2ème difficulté : il est parfois impossible de savoir si le test expérimental a été correctement effectué, et si par conséquent il réfute bien la théorie

     
     
     

    2) Le holisme scientifique (Quine)

    Philosophe anglo-saxon contemporain. Critique les théories épistémologiques qui reposent sur la croyance dans la possibilité de s’assurer que nos théories scientifiques sont les bonnes, les vraies ; et même, ne sont pas fausses. En effet, étant donné ce que nous venons de dire, ce n’est pas aussi simple que ça.

     

     

     

     

     

     

    l’ensemble de la science est comparable à un champ de forces, dont les frontières seraient l’expérience. Si un conflit avec l’expérience intervient à la périphérie, des réajustements s’opèrent à l’intérieur du champ. Il faut alors redistribuer les valeurs de vérité à chacun de nos énoncés. La réévaluation de certains énoncés entraîne la réévaluation de certains autres, à cause de leurs liaisons logiques –quant aux lois logiques elles-mêmes, elles ne sont que des énoncés situés plus loin de la périphérie du système. Lorsqu’on a réévalué un énoncé, on doit en réévaluer d’autres, qui lui sont peut-être logiquement liés, à moins qu’ils ne soient des énoncés de liaison logique eux-mêmes. Mais le champ total est tellement sous-déterminé par ses frontières, c’est-à-dire par l’expérience, qu’on a toute liberté pour choisir les énoncés qu’on veut révaluer, au cas où intervient une seule expérience contraire. Aucune expérience particulière n'est, en tant que telle, liée à un énoncé particulier situé à l'intérieur de ce champ, si ce n’est à travers des considérations d’équilibre concernant la totalité du champ ".

    Quine, Les deux dogmes de l’empirisme.

     

     

     

     

     

     

    a) Thèse de Quine 

    Modèle holiste de la connaissance, qui apparaît comme un vaste champ de force : toutes nos connaissances sont liées entre elles, on ne peut les séparer les unes des autres. Non seulement elles sont interdépendantes, mais en plus, elles ont toutes plus ou moins, de loin ou de près, un rapport avec l'expérience. Même la logique et les mathématiques. On a mis ces dernières au centre de notre savoir, parce qu'on en a besoin pour la plupart des connaissances. Mais : d’abord, on aurait pu y mettre autre chose, et ensuite, la logique et les mathématiques pourraient très bien être différentes que ce qu’elles sont. Exemple : étant doné les conséquences de la physique quantique, certains ont dit qu’il fallait changer notre logique ; cf. " le chat de Schrödinger  " : on peut penser que dans la réalité, les choses n’obéissent pas au principe de contradiction, mais peuvent être en même temps elles-mêmes et leur contraire. Mais c’est trop bizarre de penser comme ça. Si on ne les change pas, et si on les met au centre de notre savoir, c’est parce que c’est purement pratique, et qu’on a pris l’habitude de penser selon les lois de la logique classique.

     

     

     

     

     

     

    b) Conséquence concernant le rôle de l'expérience et son prétendu rôle falsificateur

    Toute hypothèse que l’on élabore pour essayer de rendre compte d’un fait (polémique), est liée à l’ensemble de la connaissance. Donc, quand on teste une hypothèse, ce n'est pas seulement cette hypothèse qu'on teste, mais aussi, tout un arrière-fond scientifique/culturel. On dira donc que le modèle de Popper ne tient pas parce que pour constituer une hypothèse, on recourt à d’autres hypothèses (qu'on en soit conscient ou non!).

     

    NB : ces hypothèses peuvent être des instruments, des hypothèses empruntées à d’autres domaines de la science, des hypothèses concernant la façon dont on doit mener l’expérience, etc.

    Exemple : revenons à l'hypothèse de Semmelweis :

    (1) la fièvre puerpérale est provoquée par un élément infectieux

    (2) si (1) est vraie alors, si les personnes qui donnent des soins aux patientes se lavent les mains dans une solution de chlorure de chaux, la mortalité due à la fièvre sera réduite

    Or, (2), qui est censée être la preuve de (1), est liée à l'autre hypothèse suivante (=auxilliaire) :

    (1') à la différence de l'eau et du savon tout seuls, la solution de chlorure de chaux détruit l'élément infectieux

     

     

     

     

     

    Le modèle holiste de la science (de l'élaboration et du test des hypothèses) est donc le suivant : si H1 et H2 etc. alors I ; et si non I, alors soit H1 soit H, etc.

    Comme toutes les connaissances sont liées, et sont de plus toutes, à un degré ou un autre, sous-déterminées par l'expérience, toute expérience, toute observation que l'on va faire, va concerner, non pas une hypothèse mais tout l'ensemble du savoir. Si bien que lorsque l’expérience attendue ne se réalise pas, on sait qu’on devra mettre en question certains éléments de la connaissance. Mais rien dans l’expérience elle-même ne détermine ce qui est à mettre en question. On est incapable de déterminer si c’est l’hypothèse qui est falsifiée ou une des théories qu’on a employées pour constituer cette hypothèse.

     

     

     

     

     

    c) Comment s'opère le changement de théorie?

    Pour la même raison que dans b), on va dire que puisque l'expérience renvoie à tous les domaines de notre connaissance, que ceux-ci sont "sous-déterminés" par l'expérience, on peut choisir librement ce qu'on va devoir changer dans notre connaissance, au cas où une expérience contredirait notre hypothèse.

     

    Mais bien sûr, notre choix n'est pas purement gratuit : le plus souvent, on agira de manière économique. Quand une expérience infirme notre théorie, on peut choisir de modifier la théorie le moins possible, en restant le plus près possible de l’expérience (car plus on va plonger à l’intérieur de la connaissance, plus ce qu’on va changer va nous obliger à changer de choses). On préférera donc renoncer aux hypothèses les moins éloignées de l’expérience, avant de changer le sens des mots (le mot " nature " par exemple) ou de renoncer aux lois logiques. Cela ne signifie nullement qu’on ne peut pas y renoncer, mais que les conséquences d’un tel renoncement sont telles que l’intérêt que l’on peut avoir à le faire est difficilement imaginable.

     

     

     

     

    d) La science et les hypothèses ad hoc 

    Ce genre de théorie concernant l'élaboration des théories scientifiques implique que la science fonctionne comme un mode de connaissance que Popper aurait appelé "pseudo-scientifique".

     

    En effet, elle n'est finalement pas plus falsifiable que l'astrologie ou la psychanalyse.

    De plus, elle peut souvent recourir à ce qu'on nomme des "hypothèse ad hoc" : il s'agit de l'ajout d’un postulat supplémentaire à une théorie, afin de la protéger d’une falsification menaçante. Comment est-ce possible ? Parce que l’hypothèse n’est pas contrôlable indépendamment de la théorie.

    Exemple : Eudoxe (astronome ) croyait que les sphères célestes étaient parfaites ; or, les observations téléscopiques infirment cette thèse ; pour la conserver à tout prix, il supposa que les sphères sont invisibles.

    NB : on ne dit pas que la modification apportée à la théorie pour la protéger de l’expérience est ad hoc si elle conduit à de nouveaux tests, mais seulement si elle est destinée à empêcher l’expérience de la détruire.

     

     

     

     

     

    3) La science est-elle vraie?

    Dès lors, on peut se demander à quel réel a affaire la science. Peut-on jamais avoir affaire au réel tel qu’il est ? Pouvons-nous jamais connaître le monde en soi, si même la science, supposée être la connaissance la plus objective et la mieux fondée, ne le peut pas ?

     

     

     

     

     

     

    a) La science n’est-elle que convention ? -Le débat instrumentalisme et réalisme.

    La science et ses théories ne seraient-elles pas alors seulement des conventions qui nous permettent de parler commodément du monde ? Si les théories ne sont pas, en effet, des reflets objectifs du réel, si l’expérience ne peut qu’à grand peine les fonder, alors, ne faut-il pas dire que ce ne sont que des fictions, des modèles de la réalité qui n’existent que dans notre esprit ?

     

    Il y a plusieurs sortes de conventionalismes :

    -extrême : les théories scientifiques sont des constructions complètement arbitraires. Il n’est soutenu par personne, car il faut quand même, au minimum, qu’une construction théorique s’accorde avec les observations, en rende compte, et permette des prédictions.

    -faible : Poincaré, La science et l’hypothèse. La science n’est pas autorisée à dire n’importe quoi. Mais, comme l’expérience n’a de sens que relativement à une théorie, il devient alors possible de l’interpréter dans des langages ou des théories différentes et même de la " corriger " pour qu’elle se laisse ainsi interpréter. Une loi théorique pourra être alors être considérée comme une définition, de sorte que si des faits la contredisent, cela pourra vouloir dire, non que la loi est fausse, mais que les faits incriminés ne tombent pas sous le coup de la définition.

    Exemple : si on découvre un corbeau blanc, cela n’infirme pas l’énoncé général " tous les corbeaux sont noirs " mais cela veut dire que ce n’est pas un corbeau.

    Ici, ce qui importe, ce n’est pas la vérité des théories, mais la cohérence de leur interprétation relativement aux données, et la réussite des prédictions qu’elles permettent. Une loi ou une théorie scientifique n’est qu’un langage commode pour rendre compte de l’expérience. C’est un instrument utile, en tant qu’il permet des explications et des prédictions, mais on ne se prononce pas sur l’existence de cet instrument. (On nomme donc encore ce conventionalisme un " instrumentaliste ")

    Exemple :

    (1) le géocentrisme soutient que le soleil tourne autour de la terre, que la terre ne se meut pas

    (2) L’héliocentrisme soutient que la terre se meut, et tourne autour du soleil

    (1) n’est pas " faux " ; c’est une interprétation du mouvement apparent (observable) des planètes. Elle est tout à fait cohérente, car elle est en accord avec les données observables, et elle permet des prédictions concernant la trajectoire des planètes, les éclipses, etc.

    (2) est une autre interprétation cohérente des mêmes données, qui permet également des prédictions.

    Si on préfère (2) à (1), c’est parce que (2) permet de faire plus de prédictions : elle est plus efficace que (1), mais pas plus " vraie ", car cela voudrait dire qu’elle décrit comment est le monde. On rejoint ici Quine, pour qui le critère de choix des théories est un critère, non pas de vérité objective, mais de commodité.

     

     

     

     

     

     

     

     

     

    Note historique  : Galilée et Copernic, ou : croyaient-ils que la terre tournait ?

    Le cardinal Bellarmin avait d’ailleurs " conseillé " à Galilée de dire que les deux théories étaient équivalentes, i.e., étaient neutres eu égard à la réalité. Mais Galilée était réaliste et il a refusé. Avant lui, Copernic avait été plus prudent et disait que l’héliocentrisme n’était qu’une manière comme une autre (i.e., comme le géocentrisme) d’interpréter les phénomènes observables. Cf. Lettre-préfacede son ouvrage intitulé "De la révolution des orbes célestes", dédiée au pape Paul III.

     

    Commentaire : L'un des premiers en Europe, Copernic a fait revivre toute la tradition héllénistique de l'astronomie mathématique et technique qui, dans l'Antiquité, avait atteint son apogée dans l'œuvre de Ptolémée (l'Almageste). Cette tradition essayait de "sauver les phénomènes", au moyen d'hypothèses conformes à la physique. Copernic a d'ailleurs adressé son ouvrage au petit nombre d'astronomes contemporains qui avaient lu le traité de Ptolémée. En effet, son but était de réformer les techniques employées dans l'Antiquité pour calculer les positions des planètes. Ce n'est qu'ensuite qu'il a été amené à "dire" que la Terre est en mouvement. La thèse de Ptolémée n'étant pas très satisfaisante, Copernic, a donc cherché à résoudre ce problème. Il a lu de nombreux philosophes; il a découvert que de nombreux philosophes de l'Antiquité avaient mis la Terre en mouvement. Il s'est demandé ce qui se passerait si on imaginait ou faisait l'hypothèse du mouvement de la terre. Il a donc essayé l'hypothèse du mouvement de la terre à titre de supposition purement fictive, et il a constaté qu'elle était capable de sauver les phénomènes. En effet, si on imagine que la Terre tourne, et que l'on regarde le mouvement des planètes depuis une terre en mouvement, alors, on peut dire que le mouvement qui nous paraît irrégulier n'est en fait qu'apparent, et est en fait régulier.

    Tout le problème est de savoir si Copernic écrit en physicien, ou en géomètre. Ie, s'il cherche à décrire la réalité profonde des choses ou à en donner une explication satisfaisante pour l'esprit.

     

    La science ne serait dès lors pas une reproduction fidèle de la réalité (contrairement à ce que dit le réalisme), mais une interprétation de la réalité -conformément au sens originaire de la théorie (" vue de l’esprit ").

    Argument en faveur de l’instrumentalisme : permet de comprendre que deux théories rivales puissent être en accord avec les phénomènes, et faire des prédictions, sans qu’on puisse vraiment savoir laquelle est la " bonne " (i.e. : description du monde).

    Objections (ou arguments en faveur du réalisme):

    -il n’est pas pratiqué par la plupart des scientifiques.

    -de plus, comment se fait-il que les théories soient efficaces, qu’elles réussissent à faire des prédictions?

    -Cf. Popper, in Conjectures et réfutations : un instrumentaliste conséquent devrait abandonner tout recours à l’expérience (il n’en a pas besoin, puisqu’il estime que sa théorie ne correspond à rien de réel). Il mènerait donc à freiner et empêcher le progrès scientifique.

     

     

     

     

    b) La science, si elle n’est pas une convention, comporte de nombreux aspects conventionnels. L’exemple des atomes.

    Ce qui a mené à la conception instrumentaliste, c’est le fait que les théories scientifiques sont très abstraites, et qu’elles contiennent des affirmations concernant des entités invisibles, inobservables (mais qui, bien entendu, ont des conséquences observables).

     

    Exemple : un électron n’est pas un objet qu’on peut observer, pas même avec un microscope électronique, qui ne permet d’en percevoir que les effets. Un détecteur de particules permet, non pas de voir les particules, mais de les détecter par les effets qu’elles induisent. En effet, l’électron est un concept formé à partir d’une théorie, une élaboration purement rationnelle qui est une réponse à un problème théorique.

    Ce n’est pas en observant un atome (chose d’ailleurs impossible) qu’on a pu observer ou constater la présence d’un noyau et d’un ou plusieurs électrons tournant autour. C’est en étudiant des réactions chimiques, en établissant des classifications d’éléments, qu’on a pu d’abord supposer que l’atome n’était pas, comme sa définition l’indiquait, la plus petite particule qui existe, mais qu’il était lui-même composé de particules plus petites. Tout le travail d’élaboration de l’atome est passé non par la perception, mais par l’invention, à partir de propriétés de l’atome qui n’ont été découvertes que par leurs effets indirects, lesquels n’ont été eux-mêmes constatés que parce qu’on les avait déduits de ces premières hypothèses. On a proposé des modèles de l’atome, et on les a étudiés (cherché les conséquences physiques et chimiques) et vérifiés expérimentalement. Si laperception est ici intervenue, ce n’est que celle des signes donnés par des appareils de mesure, pas d’objets.

    On s’est dit alors que les théories ne sont que peut-être que des fictions ou instruments commodes pour faire des calculs, prédire des évènements. Mais que les entités qu'elles postulent n'existent pas : ce sont des hypothèses 

     

     

     

     

     

     

     

     

     

    Note historique : la formation du concept d'atome au 19e.

    Au 19e, il y eut, en France, un grand débat entre scientifiques : les atomes (=particules ultimes et indivisibles de la matière) existent-ils ou non ? Si le problème se posait, c’est que l’atome était invisible.

     

    But de l'introduction de l'hypothèse atomique : expliquer que les corps, à l’échelle macroscopique, se combinent selon des quantités discrètes. Cette hypothèse supposait que la matière était, à l’échelle microscopique, constituée d’unités élémentaires et insécables, chacune se combinant en duo et en trio, et dont le poids pouvait être calculé.

    Caractéristique : on rend compte du visible en modélisant l’invisible. On propose un modèle de la réalité, mais ce qui est observable, ce sont seulement les conséquences de ce modèle, qui lui est invisible. Tout ce qu'on sait, c'est que si on postule que la matière est formée d'atomes, alors, on doit constater dans la réalité tels effets; ce sont eux que la théorie teste.

    Intérêt : permettait d’écrire la chimie sous forme concise.

    Problème : au 19e, aucun scientifique n’osait coire à l’existence des atomes. Cf. Berthelot : il avait empêché la présence de ce mot à la fac et dans les sujets d’examen, car croire aux atomes passait pour une hérésie (scientifique). C’est au début du XXe, grâce à J.Perrin, qu’on a réussi à compter les atomes, et qu’on a cru en leur existence.

    Evidemment, on a tendance à dire que si ça fonctionne comme elle le prévoit, alors, c'est qu'elle est "vraie". Le problème, c'est qu'on peut très bien avoir les mêmes effets observables avec d'autres théories; de plus, je rappelle que l'expérience en science, ne permet ni de confirmer ni à la limite d'infirmer…

     

     

     

     

    Conclusion

    Les théories scientifiques ne sont pas issues de l’expérience, mais il faut plutôt dire qu’elles la précèdent. Mais nous avons vu que ce à quoi nous mène cette seconde thèse concernant l’élaboration des théories scientifiques, ce n’est pas à dire que les théories scientifiques seraient issues purement et simplement de l’esprit de l’homme, sans aucun rapport avec le réel. Si l’expérience n’est pas le fondement de la science, reste qu’elle en est le guide. Mais c’est à l’abandon de la distinction entre l’expérience et la théorie. En effet, elles ne sont pas des domaines complètement séparés, mais on peut dire qu’il n’y a pas d’expérience sans théorie et pas de théorie sans expérience.

    Cette conséquence bouleverse toutes les idées reçues concernant la science : en effet, cette réponse nous mène à dire que la science n’est pas " vraie " au sens où elle serait une copie fidèle de la réalité (vérité-adéquation). Elle est tout autant " subjective " que l’histoire, si par subjectif on entend une reconstruction par l’homme de ce qui est décrit. La science est une construction théorique, ce qui veut dire que l’esprit de l’homme est lui-même présent dans les théories " scientifiques ". C’est un modèle …

    D’ailleurs, depuis l’avènement de la théorie de la relativité et surtout de physique quantique-, les physiciens ont bien définitivement renoncé à une objectivité forte et admis que la connaissance du réel était liée à nos instruments de mesure et donc à des théories. Ce qui signifie que l’homme ne peut jamais connaître qu’un réel informé par sa propre pensée, son langage, sa vision du monde. Le réel en soi reste donc inaccessible.

    Intérêt : donner aux sciences humaines, à l’histoire, le droit de s’appeler " sciences " ! (En tout cas, on n’a plus le droit de dire que c’est parce que l’histoire ne connaît pas le passé tel qu’il est en soi, qu’elle n’est pas une science).

    Dernier problème  : il n'y a presque plus de différence un mythe et une science. Cette thèse est-elle acceptable ? N’y a-t-il aucune différence entre une science et une pseudo-science ? –Si, quand même : cf.fait que théories scientifiques sont écrites en langage mathématique, et, quand même, sont plus efficaces que la magie. Mieux vaut se reposer sur la théorie astronomique pour prédire une éclipse de soleil que de se reposer sur les dires d’un sorcier. C’est plus sûr, il y a plus de chances pour que ça marche.

     

    1-Cf.Chalmers, op. cit., pp.34-35. Et sa critique, p.67 : les observations et expériences sont faites pour tester ou faire la lumière sur une théorie, et seules les observations qui s’y rapportent sont dignes d’êtres notées ; d’ailleurs, il faut noter que les théories sont généralement conçues avant que soient effectuées les observations nécessaires pour les tester.

    2-Différence " général " et " universel " 

    3-Exemple : (cf.Chalmers, op. cit., p.32) la découverte des lois de l’optique (lois de la réflexion et de réfraction de la lumière). On considère que ces principes généraux sont tirés de l’expérience par induction, de la façon suivante : on effectue de nombreuses expériences de laboratoire, en faisant réfléchir les rayons lumineux sur des miroirs ou sur des surfaces d’eau, en mesurant les angles d’incidence et de réfraction pour des rayons lumineux passant de l’air à l’eau, de l’eau à l’air, etc. On fait varier notablement les conditions expérimentales, en répétant par exemple les expériences avec de la lumière de différentes couleurs, etc., jusqu’à ce que les conditions permettant de légitimer la généralisation inductive des lois de l’optique soient satisfaites.

    4- Cf. Hempel, Eléments d’Epistémologie, pp.17-18 ; et Chalmers, Qu’est-ce que la science ?, pp.38 sq.

    5-Il ne peut non plus être fondé par l’expérience, car alors, on a un cercle vicieux (on est en effet obligé de recourir à l’induction pour justifier l’induction). cf. Hume, Enquête sur l’entendement humain,

    6-Cf. Chalmers, op. cit., p.43.

    7-Pourquoi pas même son âge et le temps qu’il fait !

    8-Eléments d’épistémologie, p.18.

    9-Op. cit., p.68.

    10-Cf.Chalmers, op. cit., p. 56 : exemple de l’étudiant en médecine qui apprend à lire une radiographie ; et aussi P.Feyerabend, Contre la méthode, Points Seuil Sciences (n° S 56), pp.152-5, : l’auteur montre ici que l’idée galiléenne selon laquelle les images téléscopiques étaient une image fidèle des phénomènes célestes est apparue à l’époque comme un coup de force, comme une véritable aberration.

    11-On dira "influencé"

    12-Alors qu'au début on avait dit que contrairement à l'expérience commune, l'expérience scientifique serait caractérisée par une observation sans préjugés

    13-Je veux montrer avec Hempel que le rôle de l’expérience et de l’observation n’est pas celui qu’on croit : l’expérience n’est pas au fondement de la science, mais elle a seulement un rôle de vérification.

    14-Cela signifie que l’induction et la déduction ne concernent que la preuve, non la découverte.

    15-Avec Popper, je veux montrer que même la thèse de Hempel selon laquelle l’expérience aurait un rôle vérificateur, n’est pas tenable. En effet, on ne peut établir la vérité d’une théorie à partir des faits d’observation.

    16-Autre exemple : toute situation de test est très complexe : les lois et théories gouvernent les instruments utilisés ; ainsi, quand on utilise un téléscope pour observer la position d’une planète (prévue par une théorie), la théorie doit nécessairement prescrire l’orientation qu’il faut donner au téléscope pour voir la planète à un instant donné. Dès lors, si la prédiction s’avère " fausse ", alors, on ne sait pas ce qui est faux : la théorie ? la description du montage expérimental ? l’instrument est-il fiable, etc ?

    17-on aurait d'ailleurs pu tirer cette conséquence de la thèse selon laquelle tous les énoncés d'observation sont emprunts de théorie ; Popper aurait donc dû le savoir!

    Pin It

    votre commentaire
  •  

    Les limites de la connaissance 6-4) Réalisme et monde quantique 

    Le principe  de la mesure 

     

     

     

     

     

     

     

    Préambule

     

    La science nous permettra-t-elle un jour de tout savoir? Ne rêve-t-elle pas d'une formule qui explique tout? N'y aurait-il rien qui entrave sa marche triomphale? Le monde deviendra-t-il transparent à l'intelligence humaine? Tout mystère pourra-il être à jamais dissipé?

     

    Hervé Zwirn pense qu'il n'en n'est rien.La science, en même temps qu'elle progresse à pas de géant marque elle même ses limites. C'est ce que montre la découverte des propositions indécidables qui ont suivi le théorème de Gödel. Ou celle des propriétés surprenantes du chaos déterministe. Ou encore les paradoxes de la théorie quantique qui ont opposé Einstein et Bohr  en mettant en cause toute notre manière de penser.

    L'analyse de ces limites que la science découvre à sa propre connaissance conduit à poser une question plus profonde: qu'est ce que le réel?

    (Je voudrais ici faire partager ma lecture de Hervé Zwirn).

     

     

     

     

     

    Ce cinquième article conclura cette série d'articles de présentation du monde quantique avant d'aborder plus précisément les questions plus philosophiques sur les limites et contre-limites de la connaissance et sur les doutes sur la réalité (que croire?).  Un article intermédiaire sur le chaos quantique (sujet plutôt difficile) servira de transition.

     

     

     

    A) Article précédent, résumé: 

    6-3) ébauche d'analyse des implications ontologiques. théories à variables cachées, non-séparabilité et le problème de la mesure

    Principales étapes de l'article.

    1) Ebauche d'analyse des implications ontologiques.

              a) Le caractère abstrait du formalisme quantique est déroutant.

     

              Le caractère abstrait du formalisme quantique est déroutant. 

              b) Signification de ces propriétés: 

                      A) Disparition de la correspondance directe entre état et propriétés. 

                      B) Indéterminisme.

                      C) Interférence des amplitudes de probabilité.

    2) Les théories à variables cachées et la non-séparabilité.

               a) La complétude de la mécanique quantique    

               b) Le paradoxe EPR.

               c) la réponse de Bohr. 

               d) Les théories à variables cachées.

               e) Le verdict expérimental: les inégalités de Bell.

     3) Résumé et conclusions

    Toute théorie reproduisant les prédictions de la mécanique quantique doit donc être non locale et contextualiste.

     

     

     

    B) Contenu de cet article qui est la suite du précédent article 6-3 (ébauche des implications ontologiques et théories à variables cachées). Il est donc recommandé de lire ce précédent article 6-3 avant de prendre connaissance du présent article.

     

    Le problème de la mesure et les théories à variables cachées.

     

               a) position du problème.

    biréfringence (calcite)

    L'état quantique d'un système est représenté par un vecteur appartenant à un espace vectoriel appelé "espace de Hilbert des états". Comme pour tout espace vectoriel, toute combinaison linéaire d'états possible est elle-même un état possible (c'est le principe de superposition). A chaque grandeur physiqu(position, impulsion, énergie,spin...) attachée au système, est associé un opérateur qui agit sur les états possibles; il est appelé "une observable". Le principe de réduction du paquet d'ondes stipule que lorsqu'on mesure une observable A sur un système dans l'état |ψ>, on ne peut obtenir comme résultat que l'une des valeurs propres de l'observable A. Si celle-ci possède plusieurs valeurs propres distinctes, la probabilité d'obtenir une valeur propre donnée a est fonction de l'état initial |ψ>et des états propres de A associés à a. C'est le carré du module de la projection de |ψ> sur le sous-espace propre engendré par les vecteurs propres de |ψ> associés à a. Après une mesure ayant donné a comme résultat, le système n'est plus dans l'état |ψ> mais il est projeté dans l'état propre associé à a.

    La mesure d'une observable (ou d'un ensemble complet d'observables qui commutent) permet de connaître précisément l'état dans lequel est le système. En général, comme il n'est pas dans le même état avant et après la mesure, il est impossible de mesurer une grandeur sans perturber le système (sauf si celui-ci est déjà dans un état propre de l'observable mesurée). Quand on connaît avec précision la valeur d'une observable, la valeur des observables qui ne commutent pas avec elle n'est pas définie. 

    En l'absence de mesure, l'état dsystème évolue de manière déterministe selon l'équation de Schrödinger: (ih/2 π) d l Ψ>/dt = Hl Ψ >La résolution de cette équation permet de déterminer l'état  |ψ(t)> du système à tout instant t dès qu'on connaît l'état |ψ(t0)> à l'instant initial tet qu'aucune n'est effectuée sur le système entre t et to. En général, l'évolution décrite par l'équation de Schrödinger est différente de celle décrite par le principe de réduction du paquet d'ondes. Il n'est à priori pas gênant que coexistent les deux principes de prédiction, car les conditions d'application de l'un et de l'autre semblent bien spécifiées. L'un s'applique quand le système évolue alors qu'aucune mesure n'est effectuée et l'autre s'applique dès qu'une mesure est faite. Mais cela suppose que le concept de mesure soit parfaitement clair et bien défini, mais il se trouve qu'il est très difficile de définir de manière non ambiguë  ce qu'est une mesure: (extrait du livre) "On peut voir que tel n'est pas le cas. Pour cela, considérons un système S sur lequel on fait une mesure à l'aide d'un appareil A. Deux points de vue apparemment équivalents sont possibles pour décrire cette mesure : On peut interpréter cette difficulté comme permettant de douter du choix qu'il convient de faire entre les deux processus d'évolution. 

     

    a) Si l'on s'intéresse à l'état ES du système S, le principe de réduction du paquet d'ondes prescrit comment celui-ci peut évoluer après la mesure. Supposons que la mesure a lieu à l'instant t. Si avant la mesure, l'état est ES(i), celui-ci deviendra après la mesure ES(f1) ou ES(f2) (plusieurs résultats de mesure sont possibles

    b) Considérons le grand système S constitué du système S et de l'appareil A. La mécanique quantique nous apprend que si ES est l'état du système S et EA l'état de l'appareil A, l'état du système S sera SS = ES EA. Avant l'instant t, cet état sera donc ES(i) EA(i).  Le système S n'est lui soumis à aucune mesure. Son état évolue donc conformément à l'équation de Schrödinger et il est possible de le calculer après l'instant t. on peut montrer que le calcul par l'équation de Schrödinger ne permettra jamais de retrouver pour S un résultat identique ni à ES(f1) ni à ES(f2). Les deux points de vue, qui semblent aussi légitimes l'un que l'autre, conduisent à des prédictions irréconciliables. Le premier point de vue aboutit à considérer qu'après la mesure le système S est dans un état où la grandeur mesurée possède une valeur définie. Dans le deuxième point de vue, l'état final du grand système S est un état superposé où l'appareil A et le système S sont « enchevêtrés » La valeur de la grandeur physique n'est pas définie. L'apparente contradiction entre les deux principes d'évolution est ce qu'on appelle le problème de la mesure".

     

     

    Analyse: La mesure sur un système quantique S fait toujours intervenir un appareil de mesure A, par exemple un appareil de Stern et Gerlach lors d'une mesure de spin. Le système S va interagir avec A. Considérons le système constitué par un électron dans un état de spin suivant Oz superposé:  ψe = [ a|+>z +b|->z] et faisons une mesure avec un appareil de Stern et Gerlach convenable A. Deux descriptions sont possibles. 

    La première est de considérer qu'on fait une mesure sur l'électron S dans l'état initial ψgrâce à l'appareil A. Appliquons le principe de réduction du paquet d'ondes: après la mesure, S sera dans un des deux états possibles |+>ou |->z et l'appareil A dans un état correspondant à un impact de l'électron sur l'écran en haut | |\uparrow\rangle  si l'état de l'électron est  |+>z et en bas |\downarrow\rangle si l'état de l'électron est |->z]. L'état de l'appareil est donc un état macroscopique défini, corrélé à l'état de l'électron après la mesure. 

    La deuxième consiste à faire le raisonnement suivant: L'appareil A est lui-même un système physique décrit par la mécanique quantique. Soit ψa l'état de l'appareil avant la mesure. Avant l'interaction entre A et S, le système composé de l'électron S et de l'appareil de mesure A est dans l'état quantique ψaψe, produit des états initiaux de l'électron et de l'appareil. Or ce grand système S + A n'est lui, soumis à aucune mesure. Son évolution est donc régie par l'équation de Schrödinger appliquée au vecteur d'état |ψaψe>. Les deux descriptions sont aussi légitimes l'une que l'autre, on devrait donc s'attendre à ce qu'elles aboutissent au même résultat concernant les évolutions de S et de A. Ce serait possible si l'évolution de (S + A) était telle qu'on puisse en extraire après l'interaction entre S et A un état pour S qui soit identique à celui qu'on obtient en appliquant le principe de réduction à S seul, et que l'état de A soit l'état corrélé correspondant. Or, il n'en n'est rien! L'évolution par l'équation de Schrödinger ne permet jamais de transformer un état superposé pour S en état réduit comme le fait le principe de réduction du paquet d'ondes, ni d'être dans un état macroscopique défini pour l'appareil de mesure. L'évolution à partir de l'état   ψaψe  aboutit à l'état ψAfinal = a|+>|\uparrow\rangle + b|-> |\downarrow\rangle. Cet état est appelé état "enchevêtré" car les 2 sous-systèmes sont liés de manière non factorisable (S et A forment un système indivisible dont l'état est superposé. L'ensemble (système  + appareil) forme un tout indivisible qui est dans un état superposé. Si on s'intéresse seulement à l'appareil, il est dans un état correspondant à une superposition d'impacts en haut et en bas. C'est cette difficulté qu'on appelle problème de la mesure.     

     

              b) Qu'est ce qu'une mesure?.

    C'est uniquement lors d'une mesure que les grandeurs physiques d'un système acquièrent définie. Pour Bohr, les grandeurs physiques comme la position, l'impulsion ou le spin suivant un axe, d'une particule ne sont pas des grandeurs appartenant au système en propre, mais elles doivent être considérées comme attachées à la fois au système et à l'appareil de mesure. Mais savons nous toujours dire si nous faisons une mesure sur un système ou pas? 

    Comme le fait remarquer Bohr, dès lors qu'une mesure est faite, un appareil macroscopique intervient et il faut appliquer le principe de réduction du paquet d'ondes. Cette attitude est pragmatiquement correcte car elle donne toujours le bon résultat. Mais elle n'est pas satisfaisante sur le plan conceptuel pour deux raisons: 

    a) la mécanique quantique s'applique en droit à l'appareil de mesure même si celui-ci est macroscopique. Le fait que nous savons que nous effectuons une mesure ne devrait pas entre en ligne de compte. Or la prédiction n'est pas la bonne puisque elle ne prédit pas que l'appareil et le système sont dans des états non superposés après la mesure. b) Si on interprète cette position comme voulant dire qu'il y a mesure dès lors qu'il y a interaction, alors on se heurte à deux problèmes. D'une part, la frontière entre microscopique et macroscopique n'est pas marquée de manière nette et que penser de phénomènes comme la superconductivité? et d'autre part, l'exemple de la polarisation de la lumière et de la biréfringence par un cristal de calcite, montre est une interaction macroscopique qui n'est pas une mesure (page 207 "les limites de la connaissance de H. Zwirn).

    Dans le cas de la biréfringence, le photon interagit avec le cristal de calcite qui est un objet macroscopique et pourtant cela n'est pas suffisant pour qu'une mesure de polarisation soit effective. La mesure n'intervient que si l'on complète le dispositif par un détecteur qui permet de connaître effectivement par quel canal le photon est sorti. 

     

              c) Le rôle de la conscience.

     

    Dans l'exemple précédent, le système quantique est constitué du photon et l'appareil de mesure est un cristal de calcite auquel sont ajoutés deux détecteurs permettant de savoir par quel canal est sorti le photon. On peut appliquer le principe de réduction du paquet d'ondes au photon; il nous dit que le photon sera après passage à travers l'appareil dans un état défini de polarisation H (horizontal) ou V (vertical). Mais, si on adopte le point de vue selon lequel le grand système S + A (photon + appareil de mesure) n'est soumis à aucune mesure ,l'application de l'équation de Schrödinger au grand système conduit à un état enchevêtré entre un état de polarisation superposé du photon et un état de l'appareil où chaque détecteur est dans un état "déclenché/non-déclenché". Les points de vue mènent à des conclusions divergentes. 

    L'aspect paradoxal du problème est porté à son comble dans la fameuse expérience du chat de SchrödingerErwin Schrödinger a imaginé une expérience dans laquelle un chat est enfermé dans une boîte fermée avec un dispositif qui tue l'animal dès qu'il détecte la désintégration d'un atome d'un corps radioactif ; par exemple : un détecteur de radioactivité type Geiger, relié à un interrupteur provoquant la chute d'un marteau cassant une fiole de poison — Schrödinger proposait de l'acide cyanhydrique, qui peut être enfermé sous forme liquide dans un flacon sous pression et se vaporiser, devenant un gaz mortel, une fois le flacon brisé. Si les probabilités indiquent qu'une désintégration a une chance sur deux d'avoir eu lieu au bout d'une minute, la mécanique quantique indique que, tant que l'observation n'est pas faite, l'atome est simultanément dans deux états (intact/désintégré). Or le mécanisme imaginé par Erwin Schrödinger lie l'état du chat (mort ou vivant) à l'état des particules radioactives, de sorte que le chat serait simultanément dans deux états (l'état mort et l'état vivant), jusqu'à ce que l'ouverture de la boîte (l'observation) déclenche le choix entre les deux états. Du coup, on ne peut absolument pas dire si le chat est mort ou non au bout d'une minute.

    Selon le point de vue du grand système (particule  + chat), le chat est dans un état superposé "mort/vivant" tant qu'un observateur n'a pas regardé l'intérieur de la boite. Cela soulève donc le problème de l'incohérence apparente des règles quantiques puisque les deux points de vue paraissent aussi justifiés l'un que l'autre. Pour sauver la mécanique quantique, on peut préférer préférer le premier point de vue, (on applique le principe de réduction au paquet d'ondes au photon seul pour faire une mesure), qui seul donne le bon résultat, car jamais aucun physicien n'a observé un appareil de mesure dans un état superposé. Mais cette solution bien qu'opérationnellement valide, ne donne aucun critère objectif permettant de définir ce qu'est une mesure (à quel moment se décide le sort du chat?). Ce critère pragmatique est efficace mais conceptuellement insuffisant. Il est donc impossible de caractériser une mesure comme étant une interaction avec un objet macroscopique. Qu'est-ce donc qui différencie une mesure d'une interaction banale? Avant tout, elle doit permettre de connaître la valeur d'une grandeur physique. Résumons la suite d'évènements qui se produisent lors de la mesure: arrivée du photon sur le cristal de calcite....réaction du détecteur qui par exemple provoque l'allumage d'une ampoule, observation de l'ampoule allumée par l'expérimentateur qui prend connaissance du détecteur activé. Appliquer l'équation de Schrödinger à l'ensemble des systèmes physiques de l'expérience jusqu'à l'ampoule est parfaitement cohérent. Dans ce cas, aucune mesure n'est effectuée sur le grand système et celui-ci devrait se trouver après la mesure dans un état superposé et les lampes dans une superposition d'états "allumée/éteinte", ce qui n'est évidemment pas le cas. A un moment de la chaîne, une mesure réduisant les états superposés se produit. Mais il n'y a aucune raison pour que cette réduction intervienne à un moment plutôt qu'à un autre dans la chaîne. Mais dans le dernier maillon,"observation de l'ampoule allumée par l'expérimentateur qui prend connaissance du détecteur activé", une chaîne d'évènements se produit: un photon pénètre dans l'oeil de l'observateur, le nerf optique est excité...l'observateur prend conscience de ce qu'il voit. La chaîne, appelée "chaîne de Von Neumann" ne fait intervenir que des systèmes physiques jusqu'à la prise de conscience de l'observateur. Aucune raison ne s'impose pour décider que la mesure est faite à tel ou tel endroit. En revanche, la conscience de l'observateur semble semble être le bon endroit où peut se briser la chaîne et où se produit la mesure. Cette position a été défendue par Von Neumann, London et Bauers et par Wigner. Wigner supposait que la conscience est hors du champ de la mécanique quantique et qu'elle est responsable de la réduction du paquet d'ondes. Cette interprétation n'a jamais été acceptée par la majorité des physiciens. Elle introduit un dualisme gênant pour beaucoup: il existerait dans le monde deux sortes d'entités, celles qui sont soumises à la mécanique quantique et les consciences qui ne le sont pas (cette idée n'est pas neuve, Descartes l'a défendue, c'était la glande épiphyse). Aujourd'hui, on ne s'en satisfait pas, mais aucune autre n'est disponible. Par ailleurs, les implications de cette position sont étonnantes et soulèvent des questions. Une grandeur n'a de valeur définie que lorsqu'elle est mesurée. Par exemple, c'est la conscience de l'observateur qui  est donc responsable du fait qu'une particule possède une position définie. Quel sens donner à l'existence d'une particule pour laquelle aucune des grandeurs physiques attachées ne possède de valeur? Son existence même est subordonnée à la présence d'un observateur qui fait une mesure sur elle et il serait illégitime de dire qu'une particule existe en l'absence de cet observateur. La conséquence ultime serait que les objets (constitués de particules) n'existent que lorsque quelqu'un est là pour les observer. Mais alors, qu'était l'univers avant l'apparition de l'homme...? On aboutit à des questions absurdes qui jettent un doute sur la validité de l'hypothèse. Le moyen extrême d'y répondre est d'adopter une position solipsiste: une seule conscience existe, le sienne et tout n'est que création de cette conscience. Mais cette position, bien que cohérente, est stérile. 

    Une autre proposition a été faite en 1957 par Hugg Everett III, soutenue un temps par Wheeler et qui joue encore un rôle dans certaines versions de la cosmologie quantique. (source wikipédia) Hugh Everett, estimait invraisemblable qu'une fonction d'onde déterministe donne lieu à des observations qui ne le sont pas, conséquence pourtant d'un postulat de la mécanique quantique, celui de la réduction du paquet d'onde. Ce postulat pose également un problème de cohérence mathématique avec le problème de la mesure quantique dans cette même théorie...nombre de physiciens au nombre desquels David Deutsch et Colin Bruce la considèrent la seule possible à ne pas nécessiter quelque deus ex machina introduisant en permanence de l'anti-hasard dans l'univers. Sans indiquer réellement son opinion sur cette théorie, Murray Gell-Mann montre pour elle, dans son livre le Quark et le Jaguar, une sympathie bienveillante....Selon lui, la seule source d'anti-hasard possible était l'observateur lui-même, ou plus exactement : sa nature d'observateur qui lui était propre (le résultat qu'il observait le caractérisant lui-même en tant que cet observateur) et ne concernait pas l'univers qui restait parfaitement neutre et comportait toutes les possibilités prévues par la théorie quantique. Les possibilités par lui observées définissaient seules l'observateur, qui ne percevait donc que cet univers-là.

    Cependant cette théorie soulève plus de problèmes qu'elle n'en règle. Elle ne donne aucun critère précis pour déterminer quand les scissions d'univers se produisent et se contente de dire que cela se produit quand un évènement du type mesure intervient. Elle est, par nature, non testable ni falsifiable. et selon le critère de Popper, ne peut être qualifiée de scientifique. 

     

              d) La théorie de l'environnement, début d'une solution

    Une solution mieux acceptée fait suite à une remarque de H Zeh selon laquelle les systèmes macroscopiques ne peuvent être isolés si on les traite du point de vue quantique. Cependant, il ne faut pas oublier leur environnement, ce qui a été le cas pour le problème de la mesure jusqu'aux années 1970. C'est justifié dans les cas usuels quand l'influence de l'environnement est extrêmement faible et ne produit aucune conséquence appréciable dans l'évolution du système. Mais les niveaux d'énergie des systèmes macroscopiques sont très proches les uns des autres et une très petite perturbation peut provoquer une transition. Comme le dit B. D'Espagnat: "Même un infime grain de poussière perdu dans les espaces interstellaires ne peut être considéré comme restant isolé durant un laps de temps appréciable". On peut intégrer l'environnement et considérer l'ensemble système+appareil + ... + environnement restera dans un état superposé, mais on n'aura rien gagné. Le premier à décrire un mécanisme explicite faisant intervenir l'environnement pour résoudre le problème de la mesure fut fut W. Zurek au début des années 1980. Il faut introduire auparavant "la matrice densité". 

     

              e) La matrice densité et la formulation du problème de la mesure.

    "La matrice densité" est un moyen plus général de représenter les états quantiques. Pour simplifier la présentation commençons par une analogie classique présentée par Hervé Zwirn dans son livre "les limites de la connaissance". Imaginons une boite fermée contenant un dé et secouons la. Avant d'ouvrir le couvercle nos savons que le dé peut montrer un chiffre de 1 à 6, mais nous ne savons pas lequel. En faisant la même opération sur un grand nombre de N boites identiques, chaque chiffre apparaîtra dans approximativement 1/6 des boites. Une façon de décrire l'état de l'ensemble des dés contenus dans les boites est de dire qu'il s'agit d'un mélange de dés dont 1/6 est dans l'état 1, 1/6 dans l'état 2 etc. On peut le représenter par un tableau carré de 36 éléments dont les éléments diagonaux sont tous égaux à 1/6 et les autres tous nuls. Un tel tableau est appelé une "matrice carrée diagonale d'ordre 6". On peut l'utiliser pour connaître la probabilité qu'en ouvrant la boite on trouve un dé montrant la face 1. Il suffit de regarder l'élément situé à l'intersection de la ligne 1 et de la colonne 1 (le premier élément diagonal). Pour la probabilité qu'un dé montre la face i, il suffit de regarder l'élément diagonal n° i. Si les dés sont biaisés tous de la même, façon on aura des probabilités différentes pour chaque face (pi = ni/N), mais le principe reste le même. Dans cet exemple simplifié, une telle représentation paraît inutilement complexe, mais il en est autrement en mécanique quantique. 

    Considérons un ensemble E de N électrons, tous dans le même état de spin superposé Cosα |+>z + Sinα |->z. une mesure de spin suivant Oz d'un électron peut donner le résultat + avec la probabilité Cos²α et le résultat - avec la probabilité Sin²αPar analogie avec l'exemple des dés, on pourrait penser que la matrice carrée descriptive de l'ensemble E est la matrice carrée diagonale d'ordre 2 contenant Cos²α comme premier élément diagonal et Sin²α comme deuxième élément diagonal. Ce serait celle d'un mélange M d'électrons dont une proportion Cos²α est dans l'état  |+>et une proportion Sin²α dans l'état  |->z. Mais cet état n'est pas identique à l'ensemble E d'électrons tous dans l'état superposé. Le formalisme quantique prescrit que cette matrice contienne en outre les éléments non diagonaux. 

    | Cos²α      0|                        Cos²α         CosαSinα|

    |0           Sin²α|                       |CosαSinα              Sin²α|

    Matrice du mélange M            Matrice de l'ensemble E

    Les éléments non diagonaux de la matrice E représentent les termes d'interférence. Si on effectue une mesure de spin suivant Oz de tous les électrons de l'ensemble E, chacun tombe dans un état de spin défini suivant Oz avec une probabilité définie par les éléments diagonaux. L'ensemble E devient identique au mélange MLe problème de la   mesure est donc d'expliquer comment se fait le passage de la matrice non diagonale représentant un état superposé à la matrice diagonale représentant un état réduit.

     

    Problème supplémentaire: Quelle est la grandeur mesurée?

    Le vecteur d'état est un vecteur de l'espace vectoriel de Hilbert. Un espace vectoriel est engendré par la combinaison linéaire d'un ensemble de vecteurs indépendants qui forment "une base de ce espace". Une infinité de bases sont possibles puisqu'à partir d'une base, on peut en définir une nouvelle en choisissant de nouveaux vecteurs indépendants, combinaisons linéaires des anciens vecteurs de base (par exemple |+>z et |->z  et 1/2 [|+>z + |->z) . Il est équivalent d'exprimer l'état d'un électron dans une base ou dans l'autre. Or la matrice densité prend une forme différente selon la base et n'est pas diagonale dans n'importe laquelle. Comment est alors choisie la base dans laquelle elle est diagonale? Cette question, exprimée sous forme physique revient à se demander pourquoi avec un appareil de Stern et Gerlach dont le champ magnétique est orienté selon Oz, on ne pourrait pas mesurer le spin suivant Ox? Supposons qu'on envoie un électron dans l'état  1/2 [|+>z + |->z) dans l'appareil dont le champ magnétique est orienté selon Oz. Après l'interaction mais avant l'observation du résultat, une corrélation s'est établie entre l'état de l'appareil et celui de l'électron, dont le vecteur du système électron + appareil peut s'écrire: ψSA = 1/2 { |+> |\uparrow\rangle    + |->z  |\downarrow\rangle }. L'observation permettra la réduction du paquet d'ondes et aboutira à à un impact de l'électron soit en haut|\uparrow\rangle  soit en bas |\downarrow\rangle. Mais le même état ψSA peut être écrit dans n'importe quelle base. Dans la base  |+>x et      |->x, il s'écrirait: ψSA = 1/2 { |+>[ |\uparrow\rangle   |\downarrow\rangle ]  + |->x [ |\uparrow\rangle  -  |\downarrow\rangle }. Interprétation: l'observation d'un état superposé d'impact haut et bas de l'électron sur l'écran (l'état [ |\uparrow\rangle   |\downarrow\rangle ]) est corrélé à une mesure de spin suivant Ox. On n'observe jamais d'états superposés pour un électron mais cela n'explique pas pourquoi il en est ainsi. Rien ne privilégie le fait que l'appareil doive être observé uniquement dans les états |\uparrow\rangle  ou  |\downarrow\rangle, c'est justement un des problèmes. Il en résulte que tant qu'on ne sait pas dans quelle base la matrice est diagonalisée, le formalisme quantique n'indique pas quelle est la grandeur mesurée.

     

               f) La solution de Zurek: la décohérence.

    L'intervention entre l'appareil de mesure et l'environnement est déterminée par un hamiltonien d'interaction (le hamiltonien est l'opérateur H associé à l'énergie qui intervient dans l'équation de Schrödinger). Zurek montre que si ce dernier a une forme bien particulière, on peut préciser quelle grandeur est mesurée. La base de l'espace des états qui est sélectionnée pour diagonaliser la matrice densité correspond aux grandeurs physiques de l'appareil de mesure qui ne sont pas perturbées par l'interaction de ce dernier avec l'environnement (c'est la base des vecteurs propres de l'observable qui commute avec le hamiltonien d'interaction. On montre aussi que l'interaction du système (l'électron) et de l'appareil avec l'environnement est responsable de la diagonalisation de la matrice, donc de la réduction du paquet d'onde. Ce phénomène est connu sous le nom de "décohérence".

     

    "Décohérence: source wikipédia": L'idée de base de la décohérence est qu'un système quantique ne doit pas être considéré comme isolé, mais en interaction avec un environnement possédant un grand nombre de degrés de liberté. Ce sont ces interactions qui provoquent la disparition rapide des états superposés.

    En effet, selon cette théorie, chaque éventualité d'un état superposé interagit avec son environnement ; mais la complexité des interactions est telle que les différentes possibilités deviennent rapidement incohérentes (d'où le nom de la théorie). On peut démontrer mathématiquement que chaque interaction « déphase » les fonctions d'onde des états les unes par rapport aux autres, jusqu’à devenir orthogonales et de produit scalaire nul. En conséquence, la probabilité d'observer un état superposé tend rapidement vers zéro.

    Seuls restent observables les états correspondant aux états observables macroscopiquement, par exemple - dans le cas du Chat de Schrödinger - mort ou bien vivant.

    Les interactions et l'environnement dont il est question dans cette théorie ont des origines très diverses3. Typiquement, le simple fait d'éclairer un système quantique suffit à provoquer une décohérence. Même en l'absence de tout éclairage, il reste au minimum les photons du fond diffus cosmologique qui provoquent également une décohérence, bien que très lente.

    Naturellement, le fait de mesurer volontairement un système quantique provoque des interactions nombreuses et complexes avec un environnement constitué par l'appareil de mesure. Dans ce cas, la décohérence est pratiquement instantanée et inévitable.

    Donc, pour la théorie de la décohérence, l'effondrement de la fonction d'onde n'est pas spécifiquement provoquée par un acte de mesure, mais peut avoir lieu spontanément, même en l'absence d'observation et d'observateurs4. Ceci est une différence essentielle avec le postulat de réduction du paquet d'onde qui ne spécifie pas comment, pourquoi ou à quel moment a lieu la réduction, ce qui a ouvert la porte à des interprétations mettant en jeu la conscience et la présence d'un observateur conscient. Ces interprétations deviendront sans objet si la théorie de la décohérence devient suffisamment complète pour préciser ces points.

    Durée de la décohérence

    Avec certains modèles simples, mais pertinents, il est possible de calculer les valeurs théoriques de temps de décohérence dans un certain nombre de cas de figure. Les valeurs calculées à l'aide de ces modèles dépendent essentiellement de la grandeur de l'objet considéré et de l'environnement.

    Temps de décohérence (en secondes) par type d'objet et par environnement5Poussière (10-3 cm)Agrégat moléculaire (10-5 cm)Molécule complexe (10-6 cm)

    Dans l'air 10-36 s 10-32 s 10-30 s

    Vide de laboratoire (106 molécules d'air par cm3) 10-23 s 10-19 s 10-17 s

    Vide parfait + éclairage soleil 10-21 s 10-17 s 10-13 s

    Vide intergalactique + rayonnement 3K 10-6 s 106 s ~ 11 jours 1012 s ~ 32000 ans

    Unicité de la mesure

    La décohérence mène non pas à un état unique, comme dans la réalité, mais à un ensemble d'états mutuellement exclusifs dont les probabilités sont régies par les lois de la physique quantique.

    Par exemple, la matrice densité du chat de Schrödinger évolue par décohérence en  ce qui signifie que le chat est soit mort avec une probabilité de 0.5 ou soit vivant avec une probabilité de 0.5, et non pas en  ou  comme on aurait pu le souhaiter, car - finalement- l'état constaté du chat correspond à une de ces deux dernières matrices.

    Ainsi, le mécanisme qui "choisit" l'état final du chat échappe à la théorie de la décohérence. Or, le postulat de réduction du paquet d'onde stipule que l'état final est bien projeté sur une et une seule valeur. Ce postulat n'est donc pas entièrement couvert par la théorie de la décohérence.

     

    Le problème de la mesure est-il définitivement réglé? La réponse à cette question délicate dépend en grande partie des présupposés philosophiques qu'on adopte: voir le prochain article: conséquences philosophiques.

     

               g) La théorie de bohm.
    C'est une amélioration de la théorie de De Broglie et la plus aboutie des théories à variables cachées, elle réussit à reproduire correctement les résultats de la mécanique quantique et même ceux de la mécanique quantique relativiste ("théorie quantique des champs"). Dans cette théorie, la fonction d'onde d'une particule
     ψ possède deux significations. C'est, comme en mécanique quantique, une distribution de probabilités dont le carré du module donne la probabilité de présence de la particule, mais c'est aussi une onde réelle qui lui sert de guide comme dans l'interprétation de De Broglie. Issue d'un "potentiel quantique", elle détermine de façon univoque la trajectoire que suit la particule. Cette théorie est donc déterministe et proche sur ce plan de la physique classique. Selon D'Espagnat, elle est "ontologiquement interprétable". Cependant, pour être en accord avec les prédictions de la mécanique quantique, elle doit être non-locale et contextuelle en raison des inégalités de Bell et du théorème de Kochen-Specker et le comportement des particules est très différent de celui de la physique classique. la non-localité implique qu'une particule que la valeur possédée par une particule peut dépendre de celle d'une particule distante. De plus, la valeur prédite pour une grandeur appartenant à une particule dépend de la configuration de l'appareillage mis en oeuvre et de l'environnement (contextualisme). Donc, bien que parfaitement déterminée, la trajectoire d'une particule ne peut être mesurée, puisqu'elle dépend de l'appareillage et de ses modifications.

    On rétablit donc l'ontologie de la physique classique, mais en même temps, on s'interdit d'avoir connaissance de ses propriétés. Pour Bohm, ce n'est pas parce que nous ne pouvons pas connaître quelque chose que ce quelque chose n'existe pas, alors que pour Bohr, si nous ne pouvons pas connaître quelque chose, alors il est inutile d'en parler. Cependant, la théorie de Bohm est alléchante par un retour aux concepts classiques, mais elle enlève tout moyen d'en avoir une véritable connaissance et n'a aucune conséquence empirique qui permette de la préférer à la mécanique quantique tout en étant d'une complexité technique supérieure. 

              h) Trois autres solutions.

    Rimini Girardi et Weber (GRW) ont modifié l'équation de Schrödinger en un terme qui permet une évolution dans laquelle un état pur se change en un mélange statistique bien défini, mais son interprétation présente des difficultés liées à la non-localité et au fait que lors de la réduction du paquet d'ondes, celui-ci voit son énergie augmentée.

    Roland Omnès et Griffiths. Un des buts de Griffiths est est de rétablir le fait qu'une mesure nous renseigne, non pas sur la propriété mesurés après la mesure, mais sur celle qu'elle possédait avant. Il s'agit de retrouver la possibilité pour une grandeur de posséder une valeur définie en l'absence d'une mesure. Il utilise le concept d'histoire (succession des valeurs que possède une observable). Certaines histoires, dites "cohérentes", sont supposées interprétables de manière réaliste. Omnes a poursuivi dans ce sens avec les "logiques cohérentes".  

     

    Histoires consistantes (source wikipédia).

    Cette approche a été proposée par Robert B. Griffith en 1984, et a ensuite été reprise et développée par Roland Omnès 1987 et Murray Gell-Mann en 1990.

    Elle consiste à modéliser l'évolution d'un système quantique par une « histoire consistante ». Une histoire est une séquence de sous-espaces vectoriels F1,..,Fn (qui, rappelons le, d'après le postulat 1, représentent chacun un état quantique du système), à des temps t1,..,tn.

    Les temps t1,..,tn ne sont pas quelconques, mais sont caractérisés par un évènement particulier, ou des changements de propriétés du système, en fonction de l'expérience réalisée et du système décrit. À chaque temps ti est associé une observable Ai qui elle-même se décompose en un ensemble complet de projecteurs orthogonaux Ej.

    À chaque temps ti, l'observable associée Ai subdivise l'histoire en cours en n histoires différentes, n étant le nombre de projecteurs orthogonaux de l'observable. Par exemple, à partir d'un état (un sous-espace vectoriel) F1 au temps t1, on a n sous-espaces F2.1, F2.2, .., F2.n au temps t2 etc. On a donc alors un arbre d'histoire qui se ramifie à chaque temps t.

    Une histoire consiste donc à suivre un chemin dans cet arbre, en sélectionnant à chaque temps t un sous-espace parmi tous ceux possibles.

    Parmi toutes ces histoires, tous ces chemins, certaines sont qualifiées de consistantes, si elles satisfont certaines conditions. Ces conditions expriment essentiellement que, quels que soient les sous espaces (Fi,Fj) pris dans une histoire, les états correspondant sont sans interférences quantiques, c'est-à-dire s'excluent mutuellement. Ce sont les seuls histoires retenues dans les calculs, les autres sont considérées comme « irréelles ».

    Ce modèle permet de retrouver les règles de calcul de probabilité décrites par le postulat 4, et de faire certaines prévisions expérimentales vérifiées. Cela permet de justifier que les histoires inconsistantes sont effectivement irréelles.

     

    Gell-Man et Hartle font aussi appel au concept d'histoire. Mais il ne leur apparaît pas possible d'attribuer une probabilité à toute histoire. Seules certaines histoires "à gros grains" obtenues comme sommes d'histoires "à grains fins" (plus précises) peuvent se voir attribuer une probabilité. Le procédé qui consiste à passer d'histoires précises, à grains fins a des histoires à gros grains est appelé "coarse graining". Cette théorie utilise aussi bien le coarse graining que la décohérence de manière objective, mais il apparaît que cette volonté ne peut être considérée comme satisfaite (Hervé Zwirn).

     

              i) Conclusion.

     

    Il en résulte que les solutions précédentes ne peuvent être considérées comme remettant en cause de manière significative les conséquences qui seront présentées dans le prochain article: réalisme et monde quantique, conséquences philosophiques.

     

    Ce cinquième article conclura cette série d'articles de présentation du monde quantique avant d'aborder plus précisément les questions plus philosophiques sur les limites et contre-limites de la connaissance et sur les doutes sur la réalité (que croire?).  Un article intermédiaire sur le chaos quantique (sujet plutôt difficile) servira de transition.

     

     
    Pin It

    votre commentaire
  •  

    Les limites de la connaissance 6-3) Réalisme et monde quantique 

     ébauche d'analyse des implications ontologiques. théories à variables cachées, non-séparabilité et le problème de la mesure

     

    www.math.polytechnique.fr/~paul/ceri.pdf (formalisme quantique).

     

    mandala. formalisme quantique

     

     

     

     

    Préambule

     

    La science nous permettra-t-elle un jour de tout savoir? Ne rêve-t-elle pas d'une formule qui explique tout? N'y aurait-il rien qui entrave sa marche triomphale? Le monde deviendra-t-il transparent à l'intelligence humaine? Tout mystère pourra-il être à jamais dissipé?

     

    Hervé Zwirn pense qu'il n'en n'est rien.La science, en même temps qu'elle progresse à pas de géant marque elle même ses limites. C'est ce que montre la découverte des propositions indécidables qui ont suivi le théorème de Gödel. Ou celle des propriétés surprenantes du chaos déterministe. Ou encore les paradoxes de la théorie quantique qui ont opposé Einstein et Bohr  en mettant en cause toute notre manière de penser.

    L'analyse de ces limites que la science découvre à sa propre connaissance conduit à poser une question plus profonde: qu'est ce que le réel?

    (Je voudrais ici faire partager ma lecture de Hervé Zwirn).

     

    Les limites de la connaissance 6) Réalisme et monde quantique

      6-3:ébauche d'analyse des implications ontologiques. théories à variables cachées, non-séparabilité et le problème de la mesure

     

    I) Principales étapes de l'article.

    1) Ebauche d'analyse des implications ontologiques.

              a) Le caractère abstrait du formalisme quantique est déroutant.

              b) Signification de ces propriétés: 

                      A) Disparition de la correspondance directe entre état et propriétés. 

                      B) Indéterminisme.

                      C) Interférence des amplitudes de probabilité.

    2) Les théories à variables cachées et la non-séparabilité.

               a) La complétude de la mécanique quantique    

               b) Le paradoxe EPR.

               c) la réponse de Bohr. 

               d) Les théories à variables cachées.

               e) Le verdict expérimental: les inégalités de Bell.

     3) Résumé et conclusions

    Toute théorie reproduisant les prédictions de la mécanique quantique doit donc être non locale et contextualiste.

     

    le chat de Schrödinger

     

     

    II) Contenu de l'article. 1) Ebauche d'analyse des implications ontologiques.

     

              a) Résumé des propriétés quantiques.

    Le caractère abstrait du formalisme quantique est déroutant. "Il consiste à établir une correspondance entre, d'une part, les systèmes physiques, les grandeurs attachées à ces systèmes et  les observations effectuées, et, d'autre part, des objets mathématiques et des équations portant sur ces objets, de telle sorte que, les résultats mathématiques obtenus, une fois retraduits en fonction de ce qu'ils représentent, reproduisent correctement les observations physiques. La justification du formalisme repose a posteriori sur son adéquation avec avec les résultats physiques qu'il prédit." 

    On ne doit pas chercher de compréhension intuitive physique directe des objets du formalisme quantique. L'état quantique d'un système est représenté par un vecteur appartenant à un espace vectoriel appelé "espace de Hilbert des états".Comme pour tout espace vectoriel, toute combinaison linéaire d'états possible est elle-même un état possible (c'est le principe de superposition). 

     

    A chaque grandeur physique (position, impulsion, énergie,spin...) attachée au système, est associé un opérateur qui agit sur les états possibles; il est appelé "une observable". Le principe de réduction du paquet d'ondes stipule que lorsqu'on mesure une observable A sur un système dans l'état |ψ>, on ne peut obtenir comme résultat que l'une des valeurs propres de l'observable A. Si celle-ci possède plusieurs valeurs propres distinctes, la probabilité d'obtenir une valeur propre donnée a est fonction de l'état initial |ψ>et des états propres de A associés à a. C'est le carré du module de la projection de |ψ> sur le sous-espace propre engendré par les vecteurs propres de |ψ> associés à a. Après une mesure ayant donné a comme résultat, le système n'est plus dans l'état |ψ> mais il est projeté dans l'état propre associé à a:

    Une observable est formalisée mathématiquement par un opérateur agissant sur les vecteurs d'un espace de Hilbert \mathcal{H} (chaque état quantique étant représenté par un vecteur dans cet espace).

     

    Le sens de cet opérateur observable est de donner la possibilité de décomposer un état quantique quelconque |\psi\rangle (donc un vecteur quelconque de l'espace de Hilbert) en une combinaison linéaired'états propres, chacun de ces états étant un état possible résultant de l'opération de mesure.

    Soient |\alpha_i\rangle les vecteurs propres d'un opérateur \hat{A} (éventuellement en nombre infini selon l'observable).

    \hat{A} \Rightarrow |\psi\rangle = c_1 |\alpha_1\rangle + c_2 |\alpha_2\rangle + .. +  c_n |\alpha_n\rangle + ..

    c_i = \langle\psi|\alpha_i\rangle étant le coefficient complexe de cette combinaison linéaire. (C'est une projection, produit scalaire dans l'espace de Hilbert).

    Ce coefficient donne la probabilité pour qu'un état propre \left| \alpha_i \right\rangle  soit le résultat de la mesure d'un état quantique  |\psi\rangle 

    P = {|\langle\psi |\alpha_i\rangle|}^2 (en supposant que \left| \psi \right\rangle  et \left| \alpha_i\right\rangle  soient normés)

    L'ensemble des vecteurs propres |\alpha_i\rangle n'est autre que l'ensemble des résultats possibles de l'opération de mesure formalisée par l'observable.

    Les états qui s'expriment avant la mesure sous la forme simple |\phi\rangle = c_i |\alpha_i\rangle sont appelés état propre ou état pur. En règle générale, un état quantique n'est pas pur et sont des états superposés, pour cette observable.

    Un état peut être pur selon une observable donnée, et être superposé selon une autre observable. C'est d'ailleurs la raison fondamentale du principe d'incertitude d'Heisenberg : un état quantique qui est pur pour une observable (et qui possède donc une valeur précise pour cette observable), peut avoir tout un ensemble de valeurs possibles pour une autre observable.

    Après l'opération de mesure, le système physique mesuré sera dans l'un des états propres définis par l'observable (postulat d'effondrement de la fonction d'onde).

    La mesure d'une observable (ou d'un ensemble complet d'observables qui commutent) permet de connaître précisément l'état dans lequel est le système. En général, comme il n'est pas dans le même état avant et après la mesure, il est impossible de mesurer une grandeur sans perturber le système (sauf si celui-ci est déjà dans un état propre de l'observable mesurée). Quand on connaît avec précision la valeur d'une observable, la valeur des observables qui ne commutent pas avec elle n'est pas définie. En l'absence de mesure, l'état du système évolue de manière déterministe selon l'équation de Schrödinger

     

              b) Signification de ces propriétés: 

     

    A) Disparition de la correspondance directe entre état et propriétés

    L'état d'un système n'est plus, comme en mécanique classique, la liste exhaustive des valeurs possédées par les grandeurs physiques attachées au système. L'état quantique est déterminé par une mesure des valeurs simultanées d'un ensemble d'observables qui commutent (ce qui est possible car elle sont compatibles, elles commutent). Mais le prix à payer est que toutes les autres observables ne pourront plus être considérées comme ayant des valeurs définies lorsque le système est dans cet état (On pourrait objecter que que ce n'est pas parce que nous ne pouvons pas mesurer simultanément ces valeurs, qu'elles n'ont pas,  indépendamment de notre connaissance, une valeur définie. L'analyse des états superposés montre que la mécanique quantique orthodoxe n'autorise pas une telle interprétation. Certaines tentatives ont été faites dans ce sens, comme les théories à variables cachées). On pourrait se représenter les états quantiques comme des états classiques pour lesquels il serait impossible, par principe, de donner toutes les valeurs simultanément, mais même si l'état ne peut spécifier qu'une partie des propriétés, cette donnée est censée représenter la totalité des informations sur le système (en fait, il y a des propriétés d'interférence qui peuvent exister entre certaines composantes de l'état) . On dit que la mécanique quantique est "complète". Il ne faut pas penser que l'état "réel" du système est "lui" plus complet que l'état quantique qui ne peut "encapsuler" qu'une partie de cet état. L'état réel est l'état quantique et rien d'autre (ce qui a choqué Einstein). Il ne spécifie pas les valeurs de toutes les propriétés simultanément  non parce qu'il est incomplet, mais parce qu'un état qui les spécifierait simultanément est physiquement impossible

    Prenons l'exemple des propriétés d'impulsion, position et spin. Ces 3 ,grandeurs sont des vecteurs déterminés par leurs 3 composantes suivant un système d'axes orthonormés Oxyz. A chaque projection sur un axe correspond une observable. La position est associée à aux 3 observables Rx,Ry,Rz, l'impulsion à Px,Py,Pz et le spin à Sx,Sy,Sz. Les 3 observables de position commutent. Il est donc possible de connaître les vecteurs position ou impulsion d'une particule. En revanche, les observables de spin ne commutent pas 2 à 2. Il est donc impossible de connaître simultanément la valeur du spin de la projection du spin sur deux axes distincts. Les observables De spin commutent toutes avec celles de position et d'impulsion, mais ces dernières ne commutent que lorsqu'elles sont en projection sur un axe différent (Rx et Py commutent, mais pas Rx et Px). 

    L'image classique de d'un système possédant de propriétés qui lui sont attachées indépendamment de toute mesure doit donc être abandonnée. Les propriétés n'ont pas de valeur en soi mais s'en voient attribuer une selon la mesure qu'on en fait. On doit en conclure que l'existence d'une propriété n'est plus un attribut de l'objet lui-même, mais de l'ensemble composé par l'objet et par l'appareil de mesure utilisé. On peut d'une certaine manière dire que c'est la mesure qui crée la propriété ou que la propriété n'est devenue qu'une simple potentialité. Le spin suivant Os devient une manière de parler de ce qui peut se produire lorsqu'on fait passer un électron dans un appareil de Stern et Gerlach. Initialement, c'est Bohr qui a mis en avant une telle manière de présenter la mesure. 

    Il existe cependant une échappatoire permettant de connaître partiellement la valeur de deux observables qui ne commutent pas. Si on se contente de le mesurer approximativement la position d'une particule, il est possible de connaître simultanément l'impulsion amis de manière approximative aussi. le précision qu'on est en droit d'attendre de ces mesures simultanées est limitée par les relations d'incertitude de Heisenberg qui stipulent que le produit des incertitudes sur deux mesures incompatibles est toujours supérieur à une certaine constante (h/4π  dans la cas de la position et de l'impulsion). Dans le cas d'une précision infinie sur la position, l'impulsion ne sera plus définie du tout comme on vient de la voir pour la définition de l'état d'un système. 

    Dans le monde macroscopique, on a l'impression que qu'on peut toujours mesurer simultanément la position et la vitesse, l'imprécision des appareils de mesure entraîne toujours une certaine incertitude. Nous avons l'illusion que celle-ci peut être aussi réduite que nous voulons, mais nous sommes très loin des limites imposées par la mécanique quantique.  Par exemple pour un grain de poussière de diamètre 1μ, de masse 10-15 kg, de vitesse 10-3 m/s, une mesure de position à  0,001 μ près engendrera une incertitude sur l'impulsion de 10-26 kg.m/s, soit une incertitude relative de 10-8, bien au-delà de la précision de nos appareils de mesure. Le fait d'attribuer aux objets des propriétés ayant des valeurs définies est une illusion due à la sensibilité limitée de nos appareils de mesure.

     

    B) Indéterminisme.

    Les prédictions de la mécanique quantique sont de nature probabiliste. Contrairement à la mécanique classique, il est impossible de prédire avec certitude le résultat d'une mesure même si on connaît précisément l'état initial du système. En mécanique classique, il existe une correspondance biunivoque stricte entre l'état du système et la valeur de ses propriétés. Connaitre l'état est rigoureusement équivalent à connaître la valeur des propriétés. En mécanique quantique, l'évolution de l'état du système est aussi déterministe, elle est régie par l'équation de Schrödinger.  La connaissance de l'état initial permet de prédire avec certitude les états ultérieurs du système tant qu'on n'effectue aucune mesure. Mais connaître l'état du système à un instant donné, ne suffit pas pour prédire la valeur de ses propriétés. La conséquence est que même si l'état évolue de manière déterministe entre les mesures, le résultat d'une mesure ne peut plus être prédit que de manière probabiliste. 

    Les prédictions de la mécanique quantique ont donc irréductiblement un caractère essentiellement probabiliste. La nécessité de se contenter de prédictions probabilistes était déjà apparu en mécanique classique dans la mécanique statistique et la thermodynamique. Les caractéristiques globales des gaz (température, pression), sont expliquées par les mouvements des molécules. La pression est due aux chocs des molécules sur les parois d'un récipient. La mécanique classique avec la loi des chocs permet en principe de calculer toutes les trajectoires. Ce n'est que la pratique (un litre de gaz comporte de l'ordre de 1022 molécules), qui ne permet pas de résoudre ni même d'exprimer le système. On en est donc réduit à se contenter de calculer des moyennes sur ces trajectoires à partir des probabilités. Mais il est admis que que chaque molécule possède à tout moment une vitesse et une position déterminées. Les probabilités permettent de d'effectuer des moyennes sur un grand nombre de molécules , moyennes qui représentent justement la pression ou la température du gaz. Elles permettent de reproduire les résultats de la thermodynamique qui, elle, obtenait ces résultats sans faire d'hypothèse sur la constitution interne du gaz. La mécanique statistique est donc une théorie probabiliste, mais la nature probabiliste de ce mécanisme est due à l'impossibilité matérielle de traiter trop d'informations à la fois, elle n'entraîne aucune conséquence ontologique sur le comportement des systèmes qu'elle étudie.

    Par contre, la nature probabiliste de la mécanique quantique est toute différente. Ce n'est pas notre incapacité  à traiter trop d'informations à la fois ou notre méconnaissance des états précis  qui rendent nécessaire l'utilisation des probabilités, mais la nature des objets quantiques, il y a une conséquence ontologique sur cette nature. L'indéterminisme quantique est intrinsèque et résulte non pas de l'évolution des états (qui est déterministe) mais de la disparition de la correspondance directe entre un état et la valeur des propriétés du système dans cet état. 

     

    C) Interférence des amplitudes de probabilité.

    Quelques rappels: L'état |ψ> d'un système ne peut plus être interprété comme la liste des valeurs possédées par l'ensemble des propriétés d'un système. On peut alors être tenté par se représenter un état quantique comme l'analogue d'un état classique pour lequel on s'interdit de donner des valeurs à toutes les valeurs simultanément. Mais cette représentation n'est pas bonne, car elle ne rend pas compte des capacités des composantes de l'état à interférer entre elles. 

    Résumé de l'expérience du passage de l'électron à travers des trous d'Young. |1> est l'état de l'électron qui est passé par le trou 1 (||2> pour le trou 2) (ou plutôt pour lequel une mesure a montré qu'il était passé par le trou 1). On peut dire que c'est cette mesure qui a précipité l'électron dans l'état |1>. Lorsqu'un appareil de mesure permettant de savoir par quel trou est passé chaque électron est en place, tout électron est soit dans l'état |1>, soit dans l'état |2>. Dans ce cas il n'y a pas d'interférence. Le principe de réduction du paquet d'ondes dit qu'une mesure de position sur l'écran d'un électron dans l'état |1> donnera le résultat x avec une probabilité égale au carré du module de la projection de |1> sur l'état |x>, état qui correspond à à un électron observé à la position x. Cette probabilité se note p1(x) = |<x|1>|² (produit scalaire dans le formalisme de la mécanique quantique). Cela donne une courbe de répartition des impacts présentant un maximum en face du trou 1, et de même pour l'état 2. Comme chaque électron arrivant sur l'écran est alors soit dans l'état 1, soit dans l'état 2,  la courbe finale sera la somme des deux courbes, courbe totale sans interférence correspond à la probabilité: p(x) = 1/2[p1(x)  +p2(x)] = 1/2[|<x|1>|² + |<x|2>|²].

    Par contre, si on n'observe pas quel trou passent les électrons, ceux-ci arrivent dans l'état superposé 1/2[|1> + |2 >] (le facteur 2 et un facteur de normalisation).  Le principe de réduction du paquet d'ondes dit alors que la probabilité d'observer un impact à la position x est donné par:    [|<x|1>|² + |<x|A|²] + <1|x><x|2> + <2|x><x|1>]. Les deux termes supplémentaires (appelés termes croisés) sont ceux qui induisent la présence d'interférences entre les deux états |1> et |2> au sein de l'état superposé. 

    En conclusion, c'est le sens de la suggestion de Max Born pour l'interprétation qu'il convient de donner l'état |ψ> d'un système: c'est une amplitude de probabilité (La probabilité pour que , lors d'une mesure, on obtienne un résultat x et que le système soit projeté dans l'état propre associé à |x>, est égale au carré du module de la projection de l'état initial |ψ> sur l'état  |x>. Si on note |Ψ(x)> la projection de  |ψ> sur |x>, la probabilité d'obtenir x est alors |ψ(x) 2|).

     

    En mécanique quantique ondulatoire, une amplitude de probabilité est une fonction à valeurs complexes associée à la probabilité de trouver le système dans un état particulier.

     

    Soit une particule quantique. On la décrit par une fonction d'onde \psi : \mathbf{R}^3\rightarrow \mathbf{C}; cette fonction décrit l'état du système. Dans l'interprétation de Copenhague, l'interprétation majoritairement admise dans la communauté scientifique, on dit que les valeurs de ψ représentent des amplitudes de probabilité. Lors d'une mesure de la position d'une particule, la probabilité qu'elle soit dans un volume V est donnée par

    \int_V |\psi(\mathbf x)|^2\,\mathrm d\mathbf x,

    c'est-à-dire que | ψ | 2 représente la densité de probabilité de la position de la particule.

    Cela confirme que l'état quantique ne représente plus la liste des valeurs possédées par les propriétés d'un système, mais un outil mathématique utilisé pour calculer les probabilités que les propriétés du système aient telle ou telle valeur. De plus, |Ψ> ne représente même pas directement une probabilité, c'est le carré de son module qui est une probabilité, c'est pour cela qu'on parle d'amplitude de probabilité. C'est ce qui a fait dire à Heisenberg: "La conception de la réalité objective des particules élémentaires s'est donc étrangement dissoute, non pas dans le brouillard d'une nouvelle conception de la réalité obscure ou mal comprise, mais dans la clarté transparente d'une mathématique qui ne représente plus le comportement de la particule élémentaire, mais la connaissance que nous en possédons." 

     

    2) Les théories à variables cachées et la non-séparabilité.

     

    www.lilaluz.net

    a) La complétude de la mécanique quantique.  Dès le début, l'abandon d'un grand nombre de caractéristiques propres à la physique classique provoqua l'opposition entre deux conceptions.  D'une part celle d'Einstein, Schrödinger et De Broglie qui restent attachés à un physique réaliste dans laquelle les objets ont une existence "en soi", des propriétés bien définies qui ne dépendent nullement du processus d'observation et tels qu'une prédiction non probabiliste des résultats reste, au moins en principe, possible. C'est le sens de la célèbre affirmation d'Einstein: "Dieu au moins, ne joue pas aux dés". Pour Einstein, puisque l'état quantique ne permet pas aux différentes propriétés d'un système de posséder des valeurs simultanément, alors que, selon lui, il va de soi que ces propriétés ont "en réalité" des valeurs définies, c'est que le formalisme quantique est incomplet. Une théorie , pour être complète doit avoir la propriété qu'à chaque élément de la réalité physique corresponde un élément de la théorie. La mécanique quantique, devrait donc se voir compléter par des éléments supplémentaires permettant de rétablir une connaissance précise de l'ensemble des propriétés d'un système: ce sont les variables cachées.

     D'autre part, celle dite de "l'école de Copenhage", principalement défendue par Bohr et Heinsenberg. En gros, elle accepte les étrangetés telles quelles. L'interprétation de Copenhague consiste, pour résoudre un problème, à simplement appliquer les postulats de la mécanique quantique pour prédire le résultat. Même si le résultat est choquant pour l'intuition (paradoxe EPR), les adeptes de Copenhague considèrent que si la mécanique quantique a prédit correctement l'issue, elle se suffit à elle-même ; il n'est pas nécessaire d'introduire des variables cachées. Il n'y a pas non plus à tirer des conclusions sur la nature de l'univers : l'issue est contenue dans les postulats, il n'y a pas d'autre conclusion à en tirer. se poser des questions sur ce qui se passe "réellement" entre deux mesures n'est pas pertinent. seule importe la connaissance de ce qui est mesurable, le reste est dépourvu de sens. Cette pensée est à rapprocher de l'Empirisme, on peut la qualifier de d'instrumentaliste ou de positiviste. Elle se satisfait de l'efficacité prédictive de la théorie et va même jusqu'à décréter dépourvue de sens toute question qui ne se réfère pas à un phénomène observable.

    Précédents historiques: Sans doute pour avoir la paix, Nicolas Copernic prit soin de deux choses : d’une part ne publier qu’à titre posthume, d’autre part mentionner que la relativité dont il parlait constituait avant tout un moyen commode de simplifier les calculs par rapport à la théorie des épicycles utilisée à son époque, sans chercher à se prononcer sur une quelconque réalité sous-jacente.
    Cette considération de Copernic annonce déjà l’attitude qui sera plus tard celle de l’École de Copenhague en mécanique quantique : décrire, sans nécessairement prétendre expliquer, et s’en tenir aux faits observables. Hypotheses non fingo, dira Isaac Newton : « Je n’avance pas d’hypothèses », je constate juste pour le moment que les choses fonctionnent ainsi. Richard Feynman prend soin d’enseigner la mécanique quantique avec la même prudence dans son cours, tout en déplorant le côté frustrant et non satisfaisant pour l’esprit de la chose
    .

    Ce désaccord fondamental éclate violemment lors de la parution en 1935 d'un article d'Einstein, Podolski et Rosen (paradoxe EPR) qui suggèrent une expérience destinée à mettre en défaut le caractère de complétude de la mécanique quantique. Il est habituellement présenté sous une forme plus simple proposée par Bohm.

     

              b) Le paradoxe EPR.

    Le paradoxe EPR, abréviation de Einstein-Podolsky-Rosen, est une expérience de pensée, élaborée par Albert EinsteinBoris Podolsky et Nathan Rosen, dont le but premier était de réfuter l'interprétation de Copenhague de la physique quantique.

    L'interprétation de Copenhague s'oppose à l'existence d'un quelconque état d'un système quantique avant toute mesure. En effet, il n'existe pas de preuve que cet état existe avant son observation et le supposer amène à certaines contradictions. Voir dans fr.wikipedia.org/wiki/Intrication_quantique Le caractère surprenant des états intriqués souligné par EinsteinPodolsky et Rosen dans leur article de 1935 

    (Voir aussi le très intéressant texte suivant: "Interprétation de la physique quantique : La physique quantique est-elle une théorie complète ? Philippe Cristofari, Frédéric Elie, Colette Garaventa. juin 1980")


    Présentation du critère de réalité par Einstein: "Si, sans perturber le système en aucune manière, on peut prédire avec certitude la valeur d'une quantité physique qui s'y rapporte, alors il y a vraiment un élément de la réalité physique qui correspond à cette quantité." 

    (voir dans wikipedia:Le "dispositif expérimental" (de pensée) proposé en 1935 est assez complexe, mais peut être décrit de manière plus simple sans en changer l'esprit.

    Soit deux photons P1 et P2 intriqués (voir ci-dessus, intrication quantique) de manière à avoir un moment angulaire total égal à zéro (spins anti-corrélés ou état singulet). Les deux quantités physiques non-commutables utilisée dans le raisonnement sont : 1) Le spin mesuré selon une direction Sx 2) Le spin mesuré selon une autre direction Sz.

    Si on mesure P1 selon Sx, alors - sans aucunement perturber P2 (on suppose le principe de localité) on connaît nécessairement la mesure de P2 selon cet axe (l'opposé).

    De même, si on mesure P2 selon Sz, alors - sans aucunement perturber P1, on connaît nécessairement la mesure de P1 selon cet axe (l'opposé également).

    Donc, la mesure de P1 selon un axe et de P2 selon l'autre permet de prédire avec certitude la valeur des deux quantités physiques. Ces deux quantités possèdent donc une réalité objective, et par conséquent 2) est faux et 1) est vrai.

    Tel est le paradoxe formulé initialement par EPR.

    Inégalités de Bell (source Wikipédia). Exemple de 2 particules 1 et 2 de spin 1/2 dans un état singulet et qui se séparent dans deux directions opposées.

    Les résultats des mesures ne sont pas nécessairement identiques sur les deux particules. Par exemple, on peut mesurer le spin d'une des particules selon un certain angle et le spin de l'autre particule selon un autre angle.

    Les résultats des mesures sont alors de nature statistique. Par exemple, la mesure du spin à l'aide d'un polariseur donne toujours un résultat tout ou rien. Ce que l'on obtiendra alors pour les deux mesures sont des statistiques de coïncidences : les deux mesures donnent un résultat identique dans X% des cas (et non 100% dans le cas de mesures identiques). Un grand nombre de mesures successives (sur un grand nombre de paires de particules) permet alors de calculer la corrélation entre ces mesures de spin sous des angles différents.

    Si l'on se place dans l'hypothèse des théories locales déterministes à variables cachées, les inégalités de Bell donnent des relations auxquelles ces corrélations doivent obéir.

    Nous allons démontrer ces inégalités dans un cas un peu plus simple que celui d'un angle quelconque afin de bien montrer l'origine du raisonnement.

    Soit deux particules α et β dont le spin a trois composantes A, B et C. Les composantes peuvent prendre deux valeurs + et - (on omet le facteur 1/2). Pour chaque composante, nous noterons les valeurs A + , B − , etc. Les deux particules ont des spins opposés. Lorsque α a la composante A + , alors β a la composante A − , etc.

    On mesure des paires de valeurs AB, AC et BC sur les deux particules. Le résultat des mesures est désigné par A + C − , etc.

    Si l'état des particules est déterministe, décrit par des variables cachées, alors chaque particule a un spin parfaitement déterminé avec des composantes A, B et C précises. Même si les variables cachées ne sont pas connues avec exactitude, et donc le spin, il n'empêche que cette valeur précise existe.

    Soit un ensemble de particules dans un état de spin donné pris dans un ensemble plus vaste, quelconque, de particules dans tous les états possibles. Par exemple est l'ensemble des particules avec ces composantes,  l'ensemble des particules avec ces composantes, ...

    Alors nous aurons :

     et

    Ces relations découlent tout simplement de la théorie des ensembles. Donc:

    Si  désigne le nombre de particules dans cet état, alors :

    Maintenant, nous effectuons nos mesures sur deux particules de spins opposés et ces particules sont émises sous forme d'un flux de particules de spins quelconques. Nous en déduisons que :

    où  est la probabilité de mesurer A + sur l'une des particules et B + sur l'autre.

    C'est un exemple d'inégalité de Bell.

    Dans le cas de la mesure du spin selon un angle quelconque, on n'utilise que deux composantes du spin et l'angle entre les composantes. Le calcul est un peu plus compliqué mais semblable. Le résultat est :

    ou α, β et γ sont des angles donnés aux polariseurs et  est la fonction de corrélation pour ces deux angles (la corrélation peut être négative).

     

    Dans le cas de la mécanique quantique, si l'angle du premier polariseur est α et l'angle du deuxième polariseur est β, alors le calcul (identique à la probabilité de mesurer le spin selon l'angle α alors que l'on sait que le spin a été mesuré selon l'angle β) donne :

    Comme on mesure des coïncidences, la fonction de corrélation est alors donnée par :

    On voit que les inégalités de Bell sont violées pour, par exemple, des angles égaux à  et .

    L'expérience (par exemple celle d'Alain Aspect) a largement confirmé ces résultats et aussi que la loi de Malus était vérifiée sur des photons individuels.

     

    Analyse du problème. Dans le formalisme quantique, un état singulet s'écrit: 1/2[ |A+>|B->|A->|B+>z]. (A et B étant les deux photons et leurs états correspondant à une valeur +/- 1/2 suivant Oz ). Supposons que le système soit initialement au repos et qu'à l'instant t = 0, il se désintègre. Chaque particule part dans un sens opposé (loi de la conservation de l'impulsion). Mesurons à l'instant t le spin de A suivant Oz. Si on trouve +1/2, une mesure de B suivant Oz devra donner -1/2 puisque le spin total est nul (conservation du moment cinétique), et vice versa. On peur donc prédire avec certitude quel sera le spin de B suivant Oz si on mesure celui de A, et ceci sans faire aucune mesure sur B qui peut être très éloigné de A au moment de cette mesure. Cela permet de penser que l'on n'a pas perturbé B. C'est donc que le spin de B suivant Oz a réellement cette valeur, et que, selon le critère proposé, un élément de réalité correspond à ce spin. Un mesure du spin aurait pu être faite suivant n'importe quel axe. La conclusion est que, contrairement à ce que prétend la mécanique quantique, le spin de B possède une valeur définie simultanément suivant tous les axes, c'est donc une théorie incomplète. Après la désintégration, et avant la mesure, le système est déjà dans un des deux états  |A+>|B->- ou |A->|B+>z. On a vu précédemment que l'état initial du singulet est 1/2[ |A+>|B->|A->|B+>]. Comment concilier ces deux aspects? Le système n'autorisant que des prédictions probabilistes, peut-on dire le système est composé de N2 systèmes dans l'état |A+>|B->et de n/2 systèmes dans l'état |A->|B+>z? Comme on l'a déjà dit, ce n'est pas légitime présenter les choses ainsi pour l'état superposé du singulet. Nous semblons nous heurter à une contradiction.  

    Si on accepte l'argument d'Einstein, podolski et Rosen, il faut en conclure que le formalisme de la mécanique quantique est incomplet. De plus, pour sortir de la contradiction concernant l'état dans lequel se trouve le système total avant toute mesure, cet argument semble imposer une modification du formalisme: est-ce l'état singulet ou l'un des deux états de spin définis? Si au contraire, compte tenu de ses résultats jamais mis en défaut, on met en doute le fait que la mécanique quantique peut produire un résultat contradictoire, il faut identifier la faille. 

     

              c) la réponse de Bohr. 

    Ce dernier a fourni une réponse dès 1935: pour lui, on ne peut parler de l'existence d'un système et de ses propriétés indépendamment d'instruments de mesure susceptibles d'interagir avec lui. Une propriété physique n'appartient pas à un système microscopique, mais à l'ensemble constitué par le système et l'appareil de mesure. Ce n'est que par commodité de langage que nous attribuons la propriété mesurée au système lui-même. Bohr admet bien sûr que la mesure du spin n'affecte pas B de manière mécanique, par une quelconque perturbation physique au sens habituel, mais sa conclusion est beaucoup dévastatrice pour la conception intuitive: avant la mesure du spin, les deux particules A et B, bien que spatialement séparées par une distance éventuellement très grande, ne forment pas deux entités séparées. L'ensemble constitué par les deux particules est dans l'état singulet 1/2[ |A+>|B->|A->|B+>], mais ni la particule A ni la particule B ne possède individuellement d'état défini. Seul le système possède un état, cet état singulet. L'écart se creuse ici entre les états classiques et les états quantiques: un objet quantique peut n'être dans aucun état. Lorsque deux systèmes ont interagi, seul le système global est dans un état définiC'est ce qu'on appelle "la non-séparabilité" ou "l'inséparabilité quantique". Il est hors de question d'avoir une représentation intuitive ou imagée d'une telle propriété, elle est trop radicalement en dehors de notre expérience macroscopique.

    La solution du paradoxe consiste donc à considérer qu'avant la mesure du spin de A, l'ensemble des deux particules est dans l'état singulet et qu'aucune des deux particules ne possède d'état défini. Lorsque la mesure est effectuée, A acquiert un état individuel qui peut être |A+>ou |A->et corrélativement B acquiert l'état |B->ou |B+>z. Il n'y a plus de contradiction, mais en contrepartie, il faut admettre que la mesure du spin de A permet à B, qui peut être très éloigné, d'acquérir instantanément un état individuel (on ne viole pas le principe de relativité car il est possible de montrer qu'aucune énergie ni information ne peut être transmise de cette manière). Ce qui est encore plus étrange, c'est qu'il en est de même pour la position des 2 particules. A et B forment donc un tout inséparable avant toute mesure et sont séparés par la première mesure effectuée. On peut même se demander s'il convient de parler d'objet à propos de chacune des 2 particules tant que celles-ci n'ont pas été séparées par une mesure sur l'une d'entre elles. 

     

              d) Les théories à variables cachées.

    Cet aspect contre-intuitif de la non-séparabilité n'a pas satisfait ceux des physiciens qui s'opposaient déjà à la mécanique quantique. Ils ont recherché des formalismes différents pour revenir à des comportements plus raisonnables des systèmes physiques avec le désir de rétablis le déterminisme (c'est le sens de la remarque d'Einstein). Mais l'accent a ensuite porté sur les aspects ontologiques. Le défi consiste à construire une théorie qui ne possède pas les propriétés indésirables de la mécanique quantique mais avec les contraintes de fournir les mêmes prédictions. L'idée initiale consiste à supposer que l'état quantique d'un système, qui ne fournit que des contraintes statistiques sur les résultats de mesure, représente une moyenne d'états individuels bien déterminés auxquels on peut associer des valeurs définies des grandeurs. L'état est alors complété par une ou plusieurs variables "cachées" dont la connaissance permettrait de prédire avec certitude la valeur de grandeurs mesurées.  Par exemple: si à un état |Ψ> du formalisme quantique orthodoxe prédit que la variable A peut être a1 avec la probabilité p1 ou a2 avec la probabilité p2, la théorie à variables cachées complétera la description de l'état du système en associant à |Ψ> une variable λ qui pourra valoir +1 ou -1. Si le système est dans l'état |Ψ, +1>, la mesure de A donnera obligatoirement la valeur a1, et si le système est dans l'état |Ψ, -1>, la mesure donnera obligatoirement la valeur a2. Le formalisme quantique n'utilisant que |Ψ> sera donc incomplet puisqu'il ignorera le fait qu'il est possible de donner une description plus fine de l'état. On rétablit ainsi le déterminisme car dans un tel état (dit "sans dispersion", la valeur de l'observable est définie précisément et la connaissance de l'état complet permet de prédire avec certitude le résultat de la mesure. 

    La thermodynamique donne en ce sens des prédictions qui sont des moyennes effectuées sur des états que la mécanique statistique spécifie complètement. Louis de Broglie pensait ainsi que la mécanique quantique est la thermodynamique de d'un milieu subquantique. Il a proposé une première théorie de ce type (à variables cachées) en utilisant la dualité onde-corpuscule et en proposant que toute particule soit accompagnée d'une onde qui la guiderait dans son trajet., appelée "théorie de l'onde pilote". Cette théorie donnait une explication simple de l'expérience des trous d'Young. Mais son aspect séduisant présente des difficultés: elle ne transporte aucune énergie mais peut cependant interagir avec l'électron qu'elle guide. De plus, elle ne peut décrire des systèmes de plusieurs particules. De Broglie l'a finalement abandonnée, mais elle fut développée sous un angle différent par David Bohm (Dans un prochain article, cette théorie sera reprise dans le cadre d'une analyse du problème de la mesure et des discussions ontologiques)

    De son côté, Von Neumann a énoncé une preuve mathématique selon laquelle aucune théorie à variables cachées ne peut reproduire toutes les prédictions de la mécanique quantique. Elle a abouti à l'abandon de la recherche d'une telle théorie jusqu'à ce qu'on mette en évidence une faille dans son argument. Parmi ces théories, dans celles qu'on appelle "théories locales", les propriétés des systèmes sont déterminées par des facteurs qui ne dépendent pas d'entités éloignées du système lui-même peuvent fournir des prévisions globalement analogues à celles de la mécanique quantique à certaines exceptions près qui, en fait, ont permis de réfuter ces théories. 

     

              e) Le verdict expérimental: les inégalités de Bell.

    L'expérience EPR était une "expérience de pensée" destinée à mettre en évidence des conséquences des conséquences du formalisme mais sans produire aucun effet expérimental testable. C'est Jonh Bell qui dans un célèbre article de 1964 amena la controverse sur le terrain expérimental. Il a montré que toute théorie qui suppose un "comportement local" et qui refuse la "non-séparabilité" est en désaccord avec le mécanique quantique concernant le résultat de certaines mesures corrélées. Ce désaccord est manifesté par une inégalité respectée par les théories locales et violée par la mécanique quantique. Le seule hypothèse faite par Bell est que la théorie en question vérifie le principe de causalité locale selon lequel, la probabilité d'évènements se produisant dans une certaine région de l'espace-temps n'est pas modifiée par un information se produisant dans une autre région  si ces deux régions sont séparées par un intervalle du genre espace (Aucun signal ne peut se propager de l'une à l'autre).

     

    Inégalité de Bell (source wikipédia).

    Reprenons l'exemple de deux particules 1 et 2 dans un état singulet, qui se séparent dans deux directions opposées. Les résultats des mesures ne sont pas nécessairement identiques sur les deux particules. Par exemple, on peut mesurer le spin d'une des particules selon un certain angle et le spin de l'autre particule selon un autre angle.

    Les résultats des mesures sont alors de nature statistique. Par exemple, la mesure du spin à l'aide d'un polariseur donne toujours un résultat tout ou rien. Ce que l'on obtiendra alors pour les deux mesures sont des statistiques de coïncidences : les deux mesures donnent un résultat identique dans X% des cas (et non 100% dans le cas de mesures identiques). Un grand nombre de mesures successives (sur un grand nombre de paires de particules) permet alors de calculer la corrélation entre ces mesures de spin sous des angles différents.

    Si l'on se place dans l'hypothèse des théories locales déterministes à variables cachées, les inégalités de Bell donnent des relations auxquelles ces corrélations doivent obéir.

    Nous allons démontrer ces inégalités dans un cas un peu plus simple que celui d'un angle quelconque afin de bien montrer l'origine du raisonnement.

    Soit deux particules α et β dont le spin a trois composantes A, B et C. Les composantes peuvent prendre deux valeurs + et -. Pour chaque composante, nous noterons les valeurs A + , B − , etc. Les deux particules ont des spins opposés. Lorsque α a la composante A + , alors β a la composante A − , etc.

    On mesure des paires de valeurs AB, AC et BC sur les deux particules. Le résultat des mesures est désigné par A + C − , etc.

    Si l'état des particules est déterministe, décrit par des variables cachées, alors chaque particule a un spin parfaitement déterminé avec des composantes A, B et C précises. Même si les variables cachées ne sont pas connues avec exactitude, et donc le spin, il n'empêche que cette valeur précise existe.

    Soit un ensemble de particules dans un état de spin donné pris dans un ensemble plus vaste, quelconque, de particules dans tous les états possibles. Par exemple  est l'ensemble des particules avec ces composantes,  l'ensemble des particules avec ces composantes (pour une particule, il existe donc 8 états possibles), ... Alors nous aurons :

     et

    Ces relations découlent tout simplement de la théorie des ensembles. Donc :

    Si  désigne le nombre de particules dans cet état, alors 

     

    Comme Il n'est pas possible de mesurer simultanément les composantes suivant les 2 axes du spin d'une particule et donc de tester directement cette inégalité, on peut l'écrire sous la forme n(A1+B2-)  ≤ n(A1+C2-) +n(B1+C2+). Cette inégalité, elle, est testable puisqu'elle ne nécessite qu'une seule mesure de spin suivant B pour la particule 2.

     

    Maintenant, nous effectuons nos mesures sur deux particules de spins opposés et ces particules sont émises sous forme d'un flux de particules de spins quelconques. Nous en déduisons que :

    où  est la probabilité de mesurer A + sur l'une des particules et B + sur l'autre.

    C'est un exemple d'inégalité de Bell.

     

    Dans le cas de la mesure du spin selon un angle quelconque, on n'utilise que deux composantes du spin et l'angle entre les composantes. Le calcul est un peu plus compliqué mais semblable. Le résultat est :

    où α, β et γ sont des angles donnés aux polariseurs et  est la fonction de corrélation pour ces deux angles (la corrélation peut être négative).

    L'inégalité de Bell découle directement de l'hypothèse , respectée par les théories locales, selon laquelle une particule possède des composantes de spin simultanément définies suivant tous les axes. Or, il se trouve que la mécanique quantique prédit que pour certaines orientations des axes A, B, C, l'inégalité ne sera pas respectée. Dès 1972, des expériences furent menées, mais le montage était redoutablement complexe et l'inégalité ne put être testée directement. La plupart d'entre elles ont montré que l'inégalité est violée, mais jusqu'en 1982, il était encore possible aux partisans des théories à variables cachées de de faire appel à un argument pour sauver leurs conceptions: la direction de mesure était choisie suffisamment tôt pour permettre un éventuel échange d'informations entre les appareils. Il n'était donc pas impossible d'imaginer un hypothétique mécanisme par lequel, une fois toutes les directions de mesure choisies, une influence se propage d'un appareil à l'autre à une vitesse inférieure à celle de la lumière, informant l'appareil de mesure de la particule 1 de la direction choisie pour la mesure sur la particule 2. Cette possibilité a été définitivement écartée par les expériences menées par Alain Aspect (1980-1982)

    (source wikipédia): En 1980, il manquait donc encore une expérience décisive vérifiant la réalité de l'état d'intrication quantique, sur la base de la violation des inégalités de Bell (rappel sur l'intrication quantique: L'intrication quantique est un phénomène qui a été pour la première fois mis en évidence par Erwin Schrödinger en 19351. La mécanique quantique stipule que deux systèmes quantiques différents (deux particules par exemple) ayant interagi, ou ayant une origine commune, ne peuvent pas être considérés comme deux systèmes indépendants. Dans le formalisme quantique, si le premier système possède un état |\psi\rangle et le second un état |\phi\rangle, alors le système intriqué résultant est représenté par une superposition quantique du produit tensoriel de ces deux états : |\psi\rangle|\phi\rangle. Dans cette notation, il apparaît nettement que l'éloignement physique des deux systèmes ne joue aucun rôle dans l'état d'intrication (car il n'apparaît aucune variable de position). L'état quantique intriqué reste identique — toutes choses étant égales par ailleurs — quel que soit l'éloignement des deux systèmes. Par conséquent, si une opération de mesure est effectuée sur ce système quantique intriqué, alors cette opération est valable pour les deux systèmes composant l'intricat : les résultats des mesures des deux systèmes sont corrélés.

    Alain Aspect a spécifié son expérience pour qu'elle puisse être la plus décisive possible, c'est-à-dire :

    Elle doit avoir une excellente source de particules intriquées, afin d'avoir un temps d'expérience court, et une violation la plus nette possible des inégalités de Bell.

    Elle doit mettre en évidence non seulement qu'il existe des corrélations de mesure, mais aussi que ces corrélations sont bien dues à un effet quantique (et par conséquent à une influence instantanée), et non à un effet classique qui se propagerait à une vitesse inférieure ou égale à celle de la lumière entre les deux particules.

    Le schéma expérimental doit être le plus proche possible du schéma utilisé par John Bell pour démontrer ses inégalités, afin que l'accord entre les résultats mesurés et prédits soit le plus significatif possible.

    "Source wikipédia": Rappel du schéma « idéal » de John Bell

     

     

     

     

    Le schéma ci-dessus représente le schéma de principe a partir duquel John Bell a démontré ses inégalités : une source de photons intriqués S émet simultanément deux photons ν1 et ν2 dont la polarisation est préparée de telle manière que le vecteur d'état de l'ensemble des deux photons soit :

    Cette formule signifie tout simplement que les photons sont en état superposé : tous les deux en polarité verticale, ou tous deux en polarité horizontale, perpendiculaire, avec une probabilité égale.

    Ces deux photons sont ensuite mesurés par deux polariseurs P1 et P2, chacun ayant un angle de mesure paramétrable α et β. Le résultat de la mesure de chaque polariseur est (+) ou (-) selon que la polarisation mesurée est respectivement parallèle ou perpendiculaire à l'angle de mesure du polariseur.

    Il y a un point important à souligner ici : les polariseurs imaginés dans cette expérience idéale donnent un résultat mesurable dans le cas (+) ET dans le cas (-). Ce n'est pas le cas de tous les polariseurs réels : certains détectent le cas (+) par exemple, et ne détectent rien (le photon ne ressort pas du polariseur) pour le cas (-). Les premières expériences, relatées ci-dessus, utilisaient ce genre de polariseur. Les polariseurs utilisés par Alain Aspect détectent bien les deux cas (+) et (-), se rapprochant ainsi de l'expérience idéale.

    Etant donné le dispositif et l'état de polarisation initial donné aux photons, la mécanique quantique permet de prédire les probabilités de mesurer (+,+), (-,-), (+,-) et (-,+) sur les polariseurs (P1,P2), orientés sur les angles (α,β) ; pour rappel :

    On peut démontrer (voir article Inégalités de Bell) que la violation maximale des inégalités est prévue pour |α-β| = 22°5

     

    Polariseurs à orientation variable et en position éloignée: Un point très important qui devait être testé par cette expérience est qu'il fallait s'assurer que les corrélations entre les mesures faites par P1 et P2 ne soient pas induites par des effets d'origine « classique », et notamment par des artefacts expérimentaux.

    Par exemple, si l'on prépare les polariseurs P1 et P2 avec des angles fixes donnés α et β, on peut toujours imaginer que cet état fixe génère des corrélations parasites via des boucles de courant, de masse, ou autres effets. Car les deux polariseurs font partie d'une même installation et peuvent très bien être influencés l'un l'autre via les divers circuits du dispositif expérimental, et générer des corrélations lors de la mesure.

    On peut également imaginer que l'orientation fixe des polariseurs influe, d'une manière ou d'une autre, sur l'état avec lequel le couple de photons est émis. Dans ce cas, les corrélations de mesure pourraient s'expliquer par des variables cachées au niveau des photons, dès l'émission. (Ces observations avaient été faites à Alain Aspect par John Bell lui-même).

    Une manière incontestable de mettre hors de cause ce genre d'effets — quels qu'ils soient — est que l'orientation (α,β) des polariseurs soit déterminée au dernier moment (après l'émission des photons, et avant la détection) et qu'ils soient suffisamment éloignés l'un de l'autre pour qu'aucun signal n'aie le temps d'aller de l'un à l'autre.

    De cette manière, on ne peut invoquer ni une influence de l'orientation des polariseurs au niveau de l'émission des photons (car lors de l'émission, l'orientation est encore indéterminée), ni une influence d'un polariseur sur l'autre (car les polariseurs sont trop éloignés l'un de l'autre pour pouvoir s'influencer).

    En conséquence, dans le dispositif expérimental d'Aspect, les polariseurs P1 et P2 étaient séparés de 6m de part et d'autre de la source, et de 12m l'un de l'autre. Cela donnait un temps de 20ns entre l'émission des photons et la détection : c'est le laps de temps extrêmement court pendant lequel il fallait décider de l'orientation et orienter les polariseurs.

    Comme il est physiquement impossible de changer matériellement l'orientation d'un polariseur dans ce laps de temps, deux polariseurs par côté ont été utilisés, pré-orientés différemment. Un « aiguillage » à très haute fréquence de basculement orientait aléatoirement le photon vers l'un ou l'autre de ces polariseurs. L'ensemble de ce dispositif était équivalent à un seul polariseur dont l'angle de polarisation bascule aléatoirement.

    Comme il n'était pas possible non plus de provoquer le basculement des aiguillages par l'émission du couple de photons, chaque aiguillage basculait en fait périodiquement avec une période de 10ns, de manière asynchrone avec l'émission des photons. Mais étant donné la période, on était assuré que l'aiguillage bascule au moins une fois entre l'émission d'un photon et sa détection.

     

    Le dispositif expérimental a été conçu pour que la direction de mesure de la particule 2 soit choisie à un moment où il est trop tard pour qu'un signal, même se propageant à la vitesse de la lumière puisse influence la mesure de la particule 1. Le verdict expérimental est sans appel: toute théorie à variables cachées locale est réfutée par l'expérienceLa séparabilité, c'est à dire le fait qu'une mesure effectuée par un instrument sur une particule ne peut influencer le résultat d'une mesure faite par un autre instrument éloigné sur une particule ayant interagi avec la première, doit être abandonnée.  

     

    3) Résumé et conclusions.

    Non séparabilité. Si une théorie est locale, les mesures de corrélation portant sur certaines de ses grandeurs doivent vérifier les inégalités de Bell. Les prédictions de la mécanique aboutissent à une violation de ces inégalités, or l'expérience montre que ces inégalités sont bien violées. 

    Deux positions sont alors possibles: 

         - Position des défenseurs des théories à variables cachées non locales: continuer à admettre que les propriétés d'un système peuvent être toutes simultanément définies, mais alors il faut accepter le fait que les propriétés d'une particule peuvent influencer instantanément celles d'une autre particule ayant interagi avec elle. 

          - Rejeter le fait que les propriétés d'un système sont simultanément définies et accepter le formalisme de la mécanique quantique. 

    Dans les deux cas, il est nécessaire d'admettre que certaines propriétés ou certains évènements peuvent s'influencer instantanément, quelle que soit la distance entre eux. Mais les théories à variables cachées locales (comme toutes les théories locales) sont de toute façon réfutées par l'expérience. Cette propriété est appelée "non-séparabilité" lorsque elle s'applique à la mécanique quantique et "non-localité" lorsqu'elle s'applique aux variables cachées non locales. En mécanique quantique, elle exprime que des systèmes qui ont interagi ne peuvent être indépendants tant qu'une mesure ne les a pas séparés, même s'ils sont à très grande distance l'un de l'autre (cas de l'état singulet) et aucun d'eux ne possède d'état individuel. Dans les théories à variables cachées on locales, on suppose au contraire que chaque particule possède des propriétés bien définies, mais qui ne sont pas indépendantes l'une de l'autre. la non-localité exprime donc ici la possibilité d'influences à distance instantanées de certaines propriétés sur d'autres (comme le dirait Michel Bitbol, la non-localité est une projection ontologique de la non-séparabilité).

     

    Contextualisme. Un autre théorème important de limitation est celui de Kochen et Specker qui montre que toute théorie à variable s cachées déterministe compatible avec la mécanique quantique doit être contextualiste. Prenons un exemple. Soit un système physique S et 3 observables A, B, C telles que B et C sont compatibles avec A mais pas entre elles. Supposons qu'on mesure simultanément A et B ou A et C. Dans une théorie à variables cachées déterministe, on s'attend à ce que la mesure de A dépende de l'état global du système, mais pas du choix (B ou C) de l'autre observable mesurée, donc à ce que la mesure d'une observable ne dépende pas du contexte. Une telle théorie est appelée "non contextualiste". Comme le dit D'Espagnat, "Les conditions qui définissent les types de possibles de prédictions concernant le comportement futur des systèmes quantiques sont partie inhérente de la description de tout phénomène auquel la'expression "réalité physique" peut valablement être attachée". On retrouve ici la réfutation par Bohr du paradoxe EPR. Il suggérait seulement l'existence d'une influence sur les types de prédictions qu'on pouvait faire (position...). Ici l'influence sur les valeurs même des grandeurs dynamiques. Toute théorie reproduisant les prédictions de la mécanique quantique doit donc être non locale et contextualiste.On est alors loin de la motivation originelle qui a présidé à la construction des théories à variables cachées. 

     

    Dans le prochain article, nous reviendrons sur le problème de la mesure avec le rôle de la conscience et les différentes solutions qui y ont été apportées et les conséquences philosophiques.

     
    Pin It

    votre commentaire
  •  

    |Les limites de la connaissance 6-2) Réalisme et monde quantique 

     éléments de physique quantique

     

     

    Dans cet article, ont été présentées les premières notions pour essayer d'appréhender le monde quantique. Dans le prochain article, nous verrons une ébauche d'analyse des implications ontologiques. Seront évoquées les théories à variables cachées et la non-séparabilité ainsi que le problème de la mesure.

     

     

     

    Préambule

     

    La science nous permettra-t-elle un jour de tout savoir? Ne rêve-t-elle pas d'une formule qui explique tout? N'y aurait-il rien qui entrave sa marche triomphale? Le monde deviendra-t-il transparent à l'intelligence humaine? Tout mystère pourra-il être à jamais dissipé?

     

    Hervé Zwirn pense qu'il n'en n'est rien.La science, en même temps qu'elle progresse à pas de géant marque elle même ses limites. C'est ce que montre la découverte des propositions indécidables qui ont suivi le théorème de Gödel. Ou celle des propriétés surprenantes du chaos déterministe. Ou encore les paradoxes de la théorie quantique qui ont opposé Einstein et Bohr  en mettant en cause toute notre manière de penser.

    L'analyse de ces limites que la science découvre à sa propre connaissance conduit à poser une question plus profonde: qu'est ce que le réel?

    (Je voudrais ici faire partager ma lecture de Hervé Zwirn).

     

    Les limites de la connaissance 6) Réalisme et monde quantique 

     6-2: éléments de physique quantique

     

    1) Les systèmes et les états. L'état d'un système.

     

    a) l'état en physique classique.

    - Un système est un morceau de réalité, selon l'expression de David Ruelle, qu'on isole par la pensée. La description physique doit préciser les entités corps matériels, champs, etc...) et ses propriétés physiques qu'il faudra décrire et prédire, avec différents niveaux de précision (par exemple une boule en métal aimantée se déplaçant sur un billard, en considérant que la boule est assez petite pour être un point matériel et le champ magnétique trop faible pour influencer le mouvement). La représentation adoptée sera celle d'un point matériel M de masse m glissant sur une surface plane dont les seules propriétés considérées sont la position ou la vitesse à chaque instant. Ce qu'on cherche à décrire, c'est l'évolution des propriété physiques retenues comme faisant partie du système (la position et la vitesse de la boule...). La donnée des valeurs de chacune des grandeurs physiques appartenant à un système constitue "l'état " du système à cet instant. Cette notion d'état est fondamentale. En physique classique, il semble aller de soi qu'à tout instant un système est dans un état bien défini, les grandeurs physiques qui lui sont attachées possèdent des valeurs déterminées précisément. Un boule possède une position et une vitesse parfaitement définies, même si nous ne les connaissons pas. Il y  a une correspondance parfaite entre la boule réelle et sa description par la donnée de son état. On peut ainsi associer à la boule une trajectoire qui est l'ensemble de ses positions successives au cours du temps. Toute liste de valeurs ne représente pas forcément un état réel, deux nombres décrivant une position située en dehors du billard ne correspondent pas à un état possible (c'est un état descriptible en termes linguistiques) . Le modèle doit spécifier quelles contraintes pèsent sur sur ces valeurs et préciser comment elles varient. 

    Certains formalismes sont tels qu'en faisant la somme (éventuellement pondérée, on l'appelle alors une "combinaison linéaire") de deux états possibles, on obtient un nouvel état possible du système. Si E et E' sont deux états représentés respectivement par des listes de valeurs (x,y,....t) et (x',y',....t'), L'état E = E' est représenté par (x+x', y+y',...t+t'). Une combinaison linéaire est un somme pondérée de type aE + bE'. Elle correspond à la liste de valeurs (ax + bx', ay +by',...at +bt')Si on assimile l'état du système, en tant que liste de nombre, à un vecteur, les états forment un espace vectoriel dit "espace des états".  Un exemple en électrostatique est l'état d'un ensemble de corps conducteurs à l'équilibre. 

    - En physique classique, on constate "un engagement ontologique" fort quant aux propriétés des systèmes physiques et aux états correspondants: à tout système peuvent être attachées des propriétés qui lui appartiennent en propre et qui prennent à tout moment des valeurs bien définies (vitesse, position, moment cinétique, température...).  De plus, elles sont simultanément définies et mesurables. Le fait de mesurer la valeur d'une de ces propriétés ne modifie en rien la valeur possédée par les autres propriétés et ne change pas l'état du système mesuré (Si on mesure la valeur d'une propriété qui stipule que la valeur de cette propriété est α, on est assuré de trouver α et réciproquement, si on a mesuré la valeur α pour une propriété, on est sûr que le système est dans un état qui correspond à cette valeur pour la propriété en question. A tout système correspond un état bien défini et réciproquement il est possible d'interpréter la liste des nombres entrant dans la description d'un état comme celles de l'état d'un système dont les propriétés à cet instant  ont les valeurs correspondantes. Ces valeurs peuvent ne pas être possibles pour le système, mais elles sont interprétables en termes de sens. Un état où la boule de billard est à l'extérieur du billard n'est pas possible, à cause des contraintes où elle est emprisonnée sur la table, mais un tel état est descriptible en termes linguistiques )

     

    Appareil de stern et gerlach

    -En mécanique quantique, la situation est différente. Non seulement il existe des systèmes qui ne sont dans aucun état défini mais, de plus, certains états précis ne sont pas interprétables en termes linguistiques classiques.  Il n'est plus possible de considérer que les propriétés d'un système possèdent toutes simultanément des valeurs définies. Mesurer une propriété peut avoir comme conséquence de changer une autre propriété. Cela pose donc le problème de la signification qu'il faut accorder au concept d'état quantique et à celui de propriété possédée par un système. 

    L'état d'un système est quelquefois appelé sa fonction d'onde (cette dénomination provient de la mécanique ondulatoire de Schrödinger) \left| \Psi (t)\right\rangle. Un des principes de la mécanique quantique qu'on appelle "le principe de superposition", stipule que toute combinaison linéaire d'états quantiques possibles du système est un état quantique possible du système. Il en résulte que les états quantiques forment un espace vectoriel qu'on appelle "espace de hilbert des états". Ce principe n'est pas accessoire mais il constitue un des fondements de la mécanique quantique. Certains états (on les appelle "états superposés") obtenus par combinaisons linéaires d'états donnés, bien que possibles selon la théorie ne sont pas interprétables en termes classiques (cela signifie qu'ils ne correspondent pas à des valeurs définies des grandeurs physiques concernées). 

     

    Vu son importance, ce principe est détaillé ci-dessous, il sera par la suite largement commenté. 

    En mécanique quantique, le principe de superposition stipule qu'un même état quantique peut possèder plusieurs valeurs pour une certaine quantitéobservable (spin, position, quantité de mouvement etc.)

    Ce principe résulte du fait que l'état - quel qu'il soit - d'un système quantique (une particule, une paire de particules, un atome etc..) est représenté par un vecteur dans un espace vectoriel nommé espace de Hilbert (premier postulat de la mécanique quantique).

     

    Comme tout vecteur de tout espace vectoriel, ce vecteur admet une décomposition en une combinaison linéaire de vecteurs selon une base donnée. Or, il se trouve qu'en mécanique quantique, une observable donnée (comme la position, la quantité de mouvement, le spin etc..) correspond à une base donnée de l'espace de Hilbert.

    Par conséquent, si l'on s'intéresse à la position (par exemple) d'une particule, l'état de position doit être représenté comme une somme d'un nombre infini de vecteurs, chaque vecteur représentant une position précise dans l'espace. Le carré de la norme de chacun de ces vecteurs représente la probabilité de présence de la particule à une position donnée.

    En notation bra-ket la superposition d'un état quantique |\psi\rangle se note :

    |\psi\rangle = c_1 |\alpha_1\rangle + c_2 |\alpha_2\rangle + .. +  c_n |\alpha_n\rangle + ..

    ci étant le coefficient complexe de la combinaison linéaire, et |\alpha_i\rangle les vecteurs de la base choisie (qui dépend de l'observable).

    Cette combinaison linéaire est nommée état de superposition, car la particule peut être vue comme étant simultanément, avec des probabilités diverses, en plusieurs endroits. L'état de superposition s'applique de la même façon à toutes les autres observables imaginables : vitesse, spin, ... et même mort/vivant dans le cas du célèbre Chat de Schrödinger.

     

    2) Le spin et les états superposés.

    De façon générale, un objetpossède un spin s\, s'il est invariant sous une rotation d'angle \frac{2\pi}{s}\,Une étoile à cinq branches possède un spin 5 car il est suffisant de lui faire faire une rotation de \frac{2\pi}{5}\,

    Le spin est une propriété des particules qui ne peut être décrite qu'en physique quantique.  Intuitivement, on peut se représenter une particule comme une boule tournant sur elle-même. Le spin serait alors l'équivalent de son moment cinétique de rotation propre. 

    spin de l'électron

    Cette notion a été historiquement proposée pour les électrons par Uhlenbeck et Goudsmit en 1925 pour rendre compte des spectres atomiques, notamment le dédoublement des raies spectrales du sodium. Elle s'est appliquée ensuite à toute particule quantique (proton, neutron, noyau, photon, ...). Très vite après son introduction, Pauli développa l'idée de spin en lui donnant une formulation algébrique. Il essaya surtout de se dégager de la représentation initiale qui en était faite, et qui perdure encore quand il s'agit de l'expliquer "qualitativement". En effet le spin est couramment présenté comme le moment cinétique propre d'un objet tournant sur lui-même comme les planètes ou les balles de tennis. Cette interprétation est très insuffisante pour expliquer nombre de phénomènes. Le spin est en fait une grandeur dont le sens n'apparaît clairement et naturellement que lorsqu'on se place dans le cadre de la mécanique quantique relativiste (Dirac en 1928, Wigner en 1939). Ceci implique que le spin est un "objet" purement quantique dont la compréhension physique reste, encore à l'heure actuelle, à compléter. Malgré cela, la réalité du spin est prouvée et il est surprenant que les règles le concernant soient relativement simples. En particulier, le spin est quantifié, c'est à dire, puisque c'est un vecteur, que ses projections sur un axe ne peuvent prendre que des valeurs particulières, entières ou demi-entières. Une particule de spin demi-entier est un fermion, une particule de spin entier est un boson

    C'est un peu comme une boule qui ne pourrait tourner sur elle-même qu'à des vitesses multiples de de 1 tour par seconde (1/2 tour/s pour les fermions). Elle pourrait ainsi tourner à 0,1,2 ou 10 tours/s mais pas à 2,3 tours/s. La projection sur un axe du spin d'un boson de spin entier ne peut prendre que les valeurs n,n-1,...0,-1,-2...-n et (n/2 pour des fermions). Il s'exprime en unités n = h/2π, h étant la constante de Planck

     

    La mesure de la projection sur un axe du spin d'un électron se fait au moyen d'un appareil de Stern et Gerlach (voir image en illustration du chapitre 1).

     On fait passer l'électron dans un champ magnétique orienté selon l'axe voulu. Celui-ci est dévié vers le haut ou vers le bas selon que son spin est +1/2 ou -1/2. On observe son impact sur l'écran pour connaître la valeur de son spin selon l'axe considéré. Notons |+>z et |->z les états où la projection du spin suivant Oz est égal à +1/2 et -1/2. L'état de combinaison linéaire 1/2 [+>z + |->z ] est un état possible (combinaison linéaire). Cependant, il ne correspond à aucune valeur définie de la projection su spin suivant Oz. La théorie prédit que le résultat sera tantôt 1/2, tantôt -1/2, avec une répartition égale entre les deux valeurs. Plus généralement, une mesure du spin suivant Oz d'un électron dans l'état [Cosα |+>z + Sinα |->z  ] donnera +1/2 avec une probabilité Cos²α et -1/2 avec la probabilité  Sin²α.  Cela signifie que si on considère un ensemble de N électrons, dans l'état en question et qu'on effectue une mesure de spin suivant Oz, on obtiendra en moyenne, NCos²α électrons dont le spin suivant Oz est 1/2 et NSin²αdont le spin suivant Oz est -1/2. 

     

    La conclusion est que dans un tel état superposé, la projection du spin suivant Oz ne possède aucune valeur définie. On peut être tenté de de dire que la superposition ne serait que l'expression formelle du mélange de plusieurs états différents, mais dont chacun correspondrait à une valeur bien définie du spin. C'est inexact.

     Considérons, d'un côté, un ensemble E de N électrons dans un état superposé, et de l'autre, un ensemble E' de N électrons dont un proportion Cos²α est dans l'état |+>z et une proportion Sin²α est dans l'état |->z. Si la superposition n'est qu'une manière formelle d'exprimer un mélange, les deux ensembles doivent être identiques et toutes les prédictions qu'on peut faire sur les deux ensembles doit coïncider. C'est bien le cas sur les mesures qui donnent 1/2 avec une proportion Cos²α et 1/2 avec une proportion  Sin²α   pour les 2 ensembles. En revanche, les prédictions concernant un autre axe, par exemple Ox, seront différentes. Une mesure suivant Ox sur l'ensemble E donnera comme résultat 1/2(Cosα Sinα)² et -1/2(Cosα - Sinα)². Alors que la même mesure sur l'ensemble E' donnera 1/2 et -1/2 à égalité. 

    On peut montrer, de manière générale, qu'il est impossible de construire un mélange statistique d'électrons dont chacun est dans un état de spin défini suivant Oz et tel que les prédictions soient identiques pour ce mélange statistique et pour l'ensemble d'électrons dans l'état superposé correspondant. Il est donc impossible d'interpréter un ensemble de N électrons dans l'état superposé  [Cosα |+>z + Sinα |->z  ] comme un mélange d'électrons  dont une partie serait dans l'état |+>z (et aurait un spin +1/2), et une partie dans l'état |->z (spin -1/2). Il en résulte que le spin suivant Oz d'un électron dans l'état superposé  [Cosα |+>z + Sinα |->z  ] ne peut être considéré comme possédant une valeur définie. 

     

    L'étrangeté de ce constat augmente encore si on raisonne sur la position de l'électron. Si |x> l'état d'un électron occupant la position x et |x'> celui d'un électron dans la position x', |x> +|x'> est aussi un état possible (principe de superposition).  Quelle position occupe un électron dans un tel état? La mécanique quantique répond: une fois sur 2 en x et une fois sur deux en x'. L'électron dans cet état n'occupe aucune position définie dans l'espace. Considérer qu'il est à la fois dans les 2 endroits ou qu'il est un peu dans chaque position n'a pas grand sens. On préfère considérer qu'un tel état quantique ne s'interprète pas en termes macroscopiques habituels. Les objets auxquels nous sommes habitués ne se trouvent jamais dans un état comparable. Réinterprétation de l'expérience des trous d'Young. On a vu que quand on éclaire les trous, on peut voir par lequel passent les électrons. Notons |1> l'état de l'électron qui correspond au passage de l'électron par le premier trou et |2> celui qui correspond au passage par le deuxième trou. |1> + |2> est un état possible de l'électron. Par quel trou est passé l'électron qui est dans ce état? Il est impossible d'interpréter l'état superposé comme correspondant à un électron qui est passé par un des trous. Cette indétermination est valable pour toutes les propriétés physiques du système. 

     

    3) Le principe de réduction du paquet d'ondes. La mesure quantique.

    En mécanique classique, on suppose qu'il est toujours possible de mesurer la valeur d'une propriété sans perturber le système. Un mesure ne fait que constater la valeur et n'a aucune influence sur l'état du système. En mécanique quantique, il en va différemment. 

    Le processus de mesure est régi par le principe de réduction du paquet d'ondes (ainsi appelé en référence à la fonction d'onde du système). Il énonce quelles sont les valeurs qu'il est possible de trouver quand on mesure une propriété sur un système dans un état donné et quel sera l'état du système après la mesure, en fonction du résultat trouvé. De plus, en mécanique classique, les grandeurs observables sont des nombres ou des vecteurs (listes de nombres). Le formalisme quantique associe à chaque grandeur physique observable d'un système (position, impulsion, spin, énergie...) un opérateur appelé justement "une observable". Un opérateur est une fonction de l'espace des états dans lui-même qui fait correspondre à chaque vecteur d'état un autre vecteur d'état  |\psi \rangleOn appelle vecteur propre d'un opérateur un vecteur tel que l'action de l'opérateur a pour effet de la multiplier par une constante. Si P est un opérateur et |\psi \rangle un vecteur d'état, |\psi \rangle sera un vecteur propre (ou "état propre"), Si |\psi \rangle = λ |\psi \rangle. La constante λ est appelée "valeur propre" associée au vecteur propre |\psi \rangle. Un opérateur a en général plusieurs valeurs propres. 

    Le principe de réduction du paquet d'ondes stipule que:

    a) Mesure d'une observable A: les seuls résultats qu'on peut trouver sont les valeurs propres de A.

    b) Si on trouve la valeur propre a comme résultat de la mesure, le système se trouvera après le mesure dans l'état propre de A correspondant à la valeur propre a. 

    c) La probabilité de trouver la valeur propre a comme résultat de la mesure = carré d'un nombre qui s'obtient à partir de l'état initial et des états propres de l'observable A.

    Commentaires:

    a) Pour le spin, seules les valeurs +1/2 et -1/2 (valeurs propres de l'observable associée au spin de l'électron suivant une axe) sont possibles. Dans le cas où on mesure l'énergie d'un système et où l'observable associée le "hamiltonien",  a des valeurs propres discrètes, le système ne pourra posséder que certaines énergies bien définies, c'est l'origine de la quantification de l'énergie. 

    c) Dans le cas le plus général où l'observable possède plusieurs valeurs propres distinctes, il n'est pas possible de prévoir avec certitude le résultat de la mesure. La mécanique quantique ne fournit que la probabilité de tel ou tel résultat, la prédiction est non déterministe, de nature probabiliste.

     

    4) Les observables incompatibles.

     

    En général, appliquer à un vecteur d'état l'opérateur A, suivi de l'opérateur B n'est pas équivalent à lui appliquer d'abord B, puis A. cela signifie que qu'en général AB n'est pas égal à BA (AB  BA). Lorsque AB = BA, on dit que les opérateurs commutent. Or, le formalisme quantique implique qu'il n'est pas possible de connaître simultanément la valeur de deux grandeurs physiques d'un système lorsque les observables associées ne commutent pas. En effet, il n'est possible de connaître la valeur d'une grandeur physique qu'en la mesurant. Considérons alors le système dans un état  |\psi\rangleOn peut commencer par mesurer A. Le principe de réduction dit que le résultat peut être une des valeurs propres associées à A. Mais li on a obtenu a comme résultat, l'état du système ne sera plus  |\psi\rangle mais deviendra l'état propre associé à a. Si on mesure maintenant B, on peut obtenir comme résultat l'une quelconque des valeurs propres associées de B. Supposons que nous ayons obtenu b. Le système se retrouve alors, après les deux mesures faites dans cet ordre, dans l'état propre associé à b.

     

     On pourrait penser qu'on connaît  simultanément la valeur de A et celle de B: a et b. Pour s'en assurer, il devrait suffire de refaire une mesure de A. On remarque d'abord que le résultat de la mesure ne peut donner que l'une des valeurs propres de l'observable mesurée et que la probabilité d'obtenir une valeur propre dépend de l'état initial et des états propres de l'observable. On n'est donc assuré d'obtenir comme résultat un valeur propre donnée que si l'état initial dans lequel se trouve le système est l'état propre correspondant à cette valeur. Si on effectue 2 fois de suite une mesure de l'observable A, on obtiendra bien deux fois la même valeur puisque le système sera projeté dans l'état propre correspondant et cette deuxième mesure ne pourra que donner le même résultat, ce qui permet d'ailleurs de donner un sens au fait qu'on a mesuré A. Dans le cas où on a fait la mesure de B en second, une nouvelle mesure de B donnera bien le résultat b. Mais si dans ce cas on fait une nouvelle mesure de A, (et si les observables ne commutent pas), l'état propre de B associé à la valeur b dans lequel se trouve le système après la mesure ayant donné cette valeur b est tel que la probabilité d'obtenir une valeur de A différente de a n'est pas nulle (car cet état propre de B n'est pas un état propre de A). Il n'est donc pas légitime d'affirmer que A possède la valeur A, la mesure de B ayant perturbé le système. Il est impossible d'affirmer que A possède une valeur définie. 

     

     

    Résultats: Etat propre avant  la mesure           Mesure     Résultat      Etat propre après la mesure

                       

    1                |ψ >                                                 A              a                 |a>    [A vaut a]

     

    2               |a>  [A vaut a]                                  A              a                 |a>    [A vaut toujours a]

    3               |a>  [A vaut a]                                  B              b                 |b>    [B vaut b]

    4               |b>  [B vaut b, A ne vaut plus a]        A             a'a              |a'>   [A vaut a']

    On a un résultat similaire au spin. Dans le cas du spin, le fait que la valeur du spin suivant Oz n'est pas définie quand l'électron est dans l'état superposé n'est que la manifestation du fait que dans cet état, l'électron a un spin bien défini suivant l'axe Oi et qu'il est impossible qu'il ait 

    simultanément une valeur définie suivant Oz puisque les observables associées au spin suivant Oz et suivant Oi ne commutent pas. Il en est de même pour les observables position et vitesse d'une particule. 

     

     

    Le principe de réduction du paquet d'ondes dit comment évolue évolue l'état d'un système lorsqu'on effectue une mesure sur ce système. Mais l'état d'un système évolue en fonction du temps, même lorsqu'aucune mesure n'est effectuée sur lui. Cette loi d'évolution est une équation différentielle, "l'équation de Schrödinger" qui s'écrit en notation moderne (définition wikipedia)

    L'état à l'instant t d'un système est décrit par un élément \left| \Psi (t)\right\rangle de l'espace complexe de Hilbert (avec la notation bra-ket de Paul Dirac\left| \Psi (t)\right\rangle représente les densités probabilités de résultats de toutes les mesures possibles d'un système.

     

    L'évolution temporelle de \left| \Psi (t)\right\rangle est décrite par l'équation de Schrödinger :

     

     

     

     

    \frac{\hat{\vec{\mathbf{p}}}^2}{2m}\left| \Psi (t)\right\rangle + V(\hat{\vec{\mathbf{r}}},t)\left| \Psi (t) \right\rangle=i \hbar {d\over dt} \left| \Psi (t) \right\rangle

     

     

     

    Contrairement aux équations de Maxwell gérant l'évolution des ondes électromagnétiques, l'équation de Schrödinger est non relativiste. Cette équation est un postulat. Elle a été supposée correcte après que Davisson et Germer eurent confirmé expérimentalement l'hypothèse de Louis de Broglie.

     

    Sa résolution permet en principe de calculer l'état du système au temps t lorsque l'état initial est |Ψ>. Comme on l'a vu dans l'article sur le chaos déterministe,  l'évolution régie par une équation différentielle implique que celle-ci soit déterministe: si on connaît l'état initial, on peut prédire avec certitude l'état à un instant ultérieur.

     

    Dans cet article, ont été présentées les premières notions pour essayer d'appréhender le monde quantique. Dans le prochain article, nous verrons une ébauche d'analyse des implications ontologiques. Seront évoquées les théories à variables cachées et la non-séparabilité ainsi que le problème de la mesure.

     
     
    Pin It

    votre commentaire
  •  

    Les limites de la connaissance 6-5) Réalisme et monde quantique:

    conséquences philosophiques.

     

    les univers parallèles (1/3) par pierre-27

     

    Les limites de la connaissance 6-5) Réalisme et monde quantique  

    Conséquences philosophiques.

     

    Fin de l'article en guise de conclusion:

     

    Carole Dekeijser

     

    Artiste peintre belge: état d'âme N°7.

     

    L'interprétation du solipsisme convivial n'est ni vérifiable ni falsifiable et donc n'est pas "scientifique", mais c'est le cas de beaucoup d'interprétations. On est ainsi conduit à penser que nous vivons dans un monde bien étrange, l'univers en tant que tel nous est inaccessible (voir aussi le réel voilé de Bernard d'Espagnat). Seule notre réalité individuelle empirique nous concerne, elle est différente de celle des autres bien que nous n'ayons jamais aucun moyen de nous en rendre compte. Il peut paraître absurde de parler d'états superposés enchevêtrés de l'univers comme: je peux croire que je suis ici à P... en train de parler avec une personne qui se comportera comme si elle était effectivement en conversation avec moi, alors qu'elle sera, en ce qui la concerne, en train de bronzer sur une plage. Cependant il apparaît que la conception selon laquelle l'apparence d'un Univers dont la complexité dépasse nos limites humaines est conditionnée par les cadres conceptuels de notre conscience. cela pourra être le point de départ d'une réflexion sur "qu'est-ce qu'un état d'esprit"?

     

     

     

     

     

     

    Nos états d'âme sont une forme de synthèse entre notre vision du monde, notre état physique et les évènements qui nous touchent. C'est en quelque sorte une fusion entre ce qu'il se passe à l'intérieur et l'extérieur de soi, qui a pour résultat un mélange d'émotions et de pensées dont nous n'avons pas toujours conscience.
     

     

     

    Préambule:

     

    La science nous permettra-t-elle un jour de tout savoir? Ne rêve-t-elle pas d'une formule qui explique tout? N'y aurait-il rien qui entrave sa marche triomphale? Le monde deviendra-t-il transparent à l'intelligence humaine? Tout mystère pourra-il être à jamais dissipé?

     

    Hervé Zwirn pense qu'il n'en n'est rien. La science, en même temps qu'elle progresse à pas de géant marque elle même ses limites. C'est ce que montre la découverte des propositions indécidables qui ont suivi le théorème de Gödel. Ou celle des propriétés surprenantes du chaos déterministe. Ou encore les paradoxes de la théorie quantique qui ont opposé Einstein et Bohr  en mettant en cause toute notre manière de penser.

    L'analyse de ces limites que la science découvre à sa propre connaissance conduit à poser une question plus profonde: qu'est ce que le réel?

    (Je voudrais ici faire partager ma lecture de Hervé Zwirn).

     

    Exergue:

    "Comme Popper l'a remarqué, nos théories sont des filets que nous construisons pour attraper le monde. Nous ferions mieux de d'accepter le fait que la mécanique quantique a fait surgir un poisson plutôt étrange."      Redhead (1987).

     

    1) Rappel sur les notions de physique quantique: voir les articles précédents.

     

     Dès qu'on s'intéresse aux objets dont la dimension est de l'ordre des dimensions atomiques (typiquement 10-10 m), la mécanique classique doit être remplacée par la mécanique quantique. Son efficacité est remarquable pour décrire le comportement des phénomènes subatomiques (électrons, protons, neutrons...). Elle explique la couleur des corps, le fonctionnement des semi-conducteurs, les propriétés des métaux, les niveaux d'énergie des atomes, la superfluidité...Aucun phénomène physique n'a nécessité sa révision. Mais c'est une théorie étrange qui a soulevé de nombreuses questions d'interprétation qui ne sont pas toutes entièrement résolues, malgré les progrès de ces dernières années. Elle nous force à reconsidérer entièrement beaucoup d'idées intuitives que nous avons sur les propriétés des objets, sur les rapports entre l'observateur et le phénomène observé, sur le déterminisme et elle nous conduit à modifier radicalement la conception du monde qu'on pourrait légitimement construire à partir de la mécanique classique. 

    Quels que soient les problèmes soulevés, il s'agit toujours de problèmes d'interprétation du formalisme et jamais de problèmes d'application. Elle fonctionne remarquablement bien et c'est une des théories les plus précises qui ait été jamais été construites. L'interprétation du formalisme a conduit à des conséquences philosophiques qui semblaient contraires au bon sens ou à l'intuition. Bien que les débats ne soient pas tous clos, on peut considérer aujourd'hui que nous comprenons mieux ce qui est compréhensible en elle, et avons appris à ne pas chercher à comprendre (au sens de ramener à une image familière) ce qui ne l'est pas. 

     

    Il est possible de penser qu'une expérience future produira une réfutation d'une de ses prédictions et nécessitera une nouvelle théorie, mais il semble exclu aujourd'hui que cela aboutisse à un retour en arrière vers une physique retrouvant les caractéristique de la physique classique. Les théories en cours de développement visant à décrire le monde à des échelles de plus en plus petites et qui tentent d'unifier les 4 interactions fondamentales conduisent à des remises en cause encore plus radicales des concepts classiques. La théorie des supercordes pose des problèmes encore plus redoutables que ceux de la mécanique quantique pour l'interprétation des objets mathématiques qu'elle utilise. Les conséquences philosophiques de ces nouvelles théories ne seront pas envisagées car elles sont en cours de constitution.  

    Certaines conclusions de la physique quantique comme la non-séparabilité semblent définitivement établies. L'indéterminisme l'est moins nettement. 

     

    2) La non-séparabilité.

     

    univers parallèles

    La non-séparabilité est le fait qu'il est impossible d'attribuer des propriétés individuelles à deux systèmes ayant interagi avant qu'une mesure ait été faite sur l'un d'eux. Des expériences comme celles d'Alain Aspect montrent que la non-séparabilité est une propriété des systèmes quantiques et qu'il faut l'accepter, aussi contre-intuitif que cela soit. Cela n'implique pas l'acceptation du formalisme quantique de préférence à tout autre, mais d'un enseignement tiré de l'expérience puisque la seule hypothèse utilisée pour dériver les inégalités de Bell (expérimentalement violées) est la localité. La non-séparabilité est maintenant une propriété solidement établie. La mécanique quantique la respecte et n'est donc pas réfutée, mais certains formalismes alternatifs à variables cachées, qui la respectent aussi, ne sont pas réfutés non plus.  

    Cyberic WOLLBRETT a écrit (vu sur le web)

     

     

     

     

    Pour illustrer cet effet EPR, citons Etienne Klein qui est physicien au CEA et enseignant à l'Ecole Centrale. Il y voit l'assise théorique du romantisme:Deux coeurs qui ont interagi dans le passé ne peuvent plus être considérés de la même manière que s'ils ne s'étaient jamais rencontrés. Marqués à jamais par leur rencontre, ils forment un tout inséparable.

     

    Les résultats des expériences sont nets: la non-séparabilité n'agit pas seulement sur des distances atomiques, mais sur des distances macroscopiques. Dans les expériences d'Aspect, les photons étaient séparés de plus de 10 m et ils le sont sur des distances de l'ordre du km dans les expériences plus récentes. Mais si on prend au sérieux le concept de fonction d'onde de l'univers, des systèmes séparés par des distances cosmologiques peuvent dans des états enchevêtrés qui interdisent de les considérer comme des entités indépendantes. Leur existence même ne peut être envisagée de manière individuelle. Seul "existe" un système constitué par le tout formé par l'ensemble des systèmes ayant interagi et qui n'on été soumis à aucune observation, même s'il est étalé sur plusieurs années années lumières. Ainsi qu'il est dit en exergue de cet article, "Comme Popper l'a remarqué, nos théories sont des filets que nous construisons pour attraper le monde. Nous ferions mieux de d'accepter le fait que la mécanique quantique a fait surgir un poisson plutôt étrange."      Redhead (1987).
     
    3) déterminisme ou hasard?.
    Le formalisme quantique ne fait que des prévisions de nature probabiliste, mais le non-déterminisme quantique ne résulte pas de notre ignorance des l'état détaillé des systèmes, mais de l'essence même de cet état (le vecteur d'état représente tout ce qu'il est possible de savoir sur un système). Si on ne se place pas dans le cadre des théories à variables cachées, on est obligé d'admettre que ce qu'on appelle la nature ne sait pas elle-même à l'avance quel va être le résultat d'une observation ou d'une mesure et n'en déplaise à Einstein, il semble bien que Dieu joue aux dés. Cet indéterminisme essentiel est bien plus radical que celui qui est envisagé dans le chaos déterministe, mais il ne concerne que les résultats d'une mesure et non pas l'évolution dans le temps de l'état d'un système qui est, elle parfaitement déterministe. 
     
    Pour y faire face, on peut adopter certaines TVC (théories à variables cachées) non locales qui préservent le déterminisme, mais cette attitude est coûteuse. Elles rétablissent la possibilité en principe (si l'on connaissait le valeur des variables cachées) de prédire le résultat de la mesure de A,  mais elles n'autorisent pas pour autant à considérer que A possède cette valeur avant la mesure. Elles ne peuvent donc pas s'interpréter comme rétablissant le réalisme habituel. De plus, leur formalisme est beaucoup plus complexe que celui de la mécanique quantique et elles ne font aucune prédiction nouvelle, ce qui les rend stériles. Par ailleurs, elles semblent extrêmement difficiles à étendre au cadre relativiste (relativité restreinte) qui est pourtant obligatoire pour tenir compte des énergies élevées. Par exemple, pour l'interaction électromagnétique, la théorie quantique des champs est actuellement considérée comme la théorie la plus précise jamais construite. Or, les TVC posent de difficiles problèmes quand il s'agit de les marier avec la relativité restreinte, même si la théorie de Bohm a réussi cette extension. Mais, plus grave encore, la motivation pour introduire ces théories consiste à tenter de rétablir une interprétation raisonnable de fonctionnement du monde. Malheureusement, elles souffrent d'interprétations au moins aussi étranges que celles de la mécanique quantique. Elle doivent au minimum être non-locales et contextuelles, ce qui, contrairement à ce qu'on pourrait souhaiter, interdit de considérer que certaines observables aient une valeur définie lorsqu'un jeu de variables cachées est donné: les valeurs dépendent de la spécification de données contextuelles comme la direction des axes de cordonnées. 
    Cela n'est pas suffisant pour écarter la possibilité qu'une TVC de ce type soit correcte et il n'est pas interdit de l'adopter pour qui veut préserver une sorte de déterminisme. En ce sens, l'indéterminisme n'est pas une conclusion aussi contraignante que la non-séparabilité, cependant, les physiciens dans leur grande majorité, préfèrent penser que la bonne théorie est la mécanique quantique. Ils sont donc contraints d'accepter l'indéterminisme qui lui est associé. 
     
    4) La notion d'état disparaît comme représentation de "ce qui est"
    Le concept d'état individuel d'un système comme synthétisant l'ensemble des propriétés qu'il possède à un instant donné doit être abandonné. Ce n'est plus qu'un outil permettant de prédire le résultat que la mesure d'une certaine grandeur produira. L'état ne représente donc plus, comme c'était le cas en mécanique classique, ce qu'"est" le système, mais uniquement la potentialité qu'il fournisse tel ou tel résultat lors de telle ou telle mesure. 
    Il est même impossible d'imaginer ou de penser que les grandeurs attachées au système possèdent des valeurs définies. Pour ceux qui adoptent l'attitude positiviste de l'école de Copenhague, s'interroger sur l'état réel d'un système entre deux mesures est dénué de sens, et seul importe ce qui est mesuré. En revanche, elle montre à ceux qui veulent conserver une position réaliste, que le réel qu'ils veulent préserver refuse de se voir attribuer des propriétés définies quand il n'est pas observé. 
     
    5) Le rôle de l'observateur.
    Ceci amène a se poser la question du rôle de l'observateur. Nous sommes habitués avec la physique classique, à une correspondance biunivoque entre le monde et sa description et nous pensons que notre perception correspond à l'existence d'objets qui lui sont réellement conformes, objets qui la causent. L'objet est là, tel que nous le percevons l'observateur joue un rôle essentiellement passif, en se bornant à à enregistrer ce qui est extérieur à lui-même. Il n'agit ni sur cet extérieur, ni sur ce qu'il enregistre, c'est pour cela que la physique classique est dite "objective". 
    En physique quantique (selon Bernard d'Espagnat), il semble impossible de formuler cette théorie sans faire référence à un observateur. La raison est liée au problème de la mesure et à la disparition de la possibilité d'interpréter l'état d'un système comme décrivant les propriétés possédées par ce système. Ce n'est donc pas une théorie objective dans le sens où "objectif" signifie un formalisme qui décrit la réalité indépendamment de tout observateur. Mais elle n'est pas non plus subjective au sens où chacun y trouverait sa vérité, différente de celle des autres. D'Espagnat la décrit comme une théorie à "objectivité faible" ou "intersubjective". Elle fait nécessairement intervenir un observateur, mais tous les observateurs sont d'accord sur ce qu'ils observent. C'est cette raison qui est invoquée à l'appui de la thèse réaliste: si les observateurs sont d'accord sur ce qu'ils observent, c'est qu'il existe "quelque chose" en dehors d'eux qui cause leurs perceptions (principe de la cause commune). En revanche, il n'est plus possible de supposer que que ce "quelque chose" ressemble vraiment à ce que nous en percevons. C'est la raison pour laquelle D'Espagnat parle de "réel voilé", qui est décrit, partiellement au moins, par le formalisme quantique et qui est indéterministe, non séparable, et non compréhensible en totalité. 
    Cette distinction entre le monde tel qu'il est et le monde tel que nous le percevons n'est pas une nouveauté en philosophie. Le monde en soi, inaccessible et incompréhensible, a été opposé, chez les philosophes anciens, au monde des phénomènes de la réalité empirique. Mais aujourd'hui, cette conception ne provient pas de réflexions abstraites mais est issue directement d'un aller-retour entre expérience et théorie. Pour la première fois dans l'histoire de la philosophie, choisir de croire qu'il existe un monde extérieur à tout observateur et conforme à ce que nous en percevons ne semble plus possible, à moins d'adopter une attitude irrationnelle. Cette conclusion semble s'imposer même si on refuse le formalisme quantique pour adopter celui des TVC non locales. Deux positions sont possibles.
    Premier schéma possibleCelui de l'école de Copenhague (BohrHeisenbergBorn). Il consiste à refuser de considérer que ces questions ont un sens. La mécanique quantique fonctionne remarquablement bien. Il est inutile de se demander ce qui se passe en dehors de ce qui est observable. Cette position "instrumentaliste", ou "positiviste" est bien caricaturée par la maxime A. Garg: "Tais-toi et calcule". Mais certains ont cherché à aller plus loin, à faire de la métaphysique au sens propre du terme et à s'interroger sur le statut de nos perceptions: 
    Deuxième schéma possible: Considérer que cela a un sens de s'interroger sur le statut de la réalité, que seule la la réalité empirique a une existence et qu'il est illusoire de chercher, en dehors de nous et au-delà des phénomènes observables, une cause profonde de nos observations. C'est le"réalisme empirique": le formalisme quantique n'est qu'un outil mathématique pour prédire les résultats d'observation, dont les entités mathématiques, non observables, n'ont aucun statut de réalité. Plusieurs attitudes sont possibles. Les "réalistes empiristes pragmatiques" ne font aucune distinction entre deux systèmes décrits par des états différents mais dont l'observation pratique n'est pas pratiquement possible (demandant plus que l'âge de l'univers par exemple). Les "réalistes empiriques de principe" pensent que qu'une différence de principe est suffisante pour que deux descriptions ne soient pas identifiées, même si l'observation en est hors de portée. Le "réalisme métaphysique" (Bernard d'Espagnat en particulier) consiste à croire que qu'au-delà du monde empirique, il existe quelque chose qui entretient une certaine relation avec la réalité empirique. Il conduit à accepter que l'observateur joue un rôle important. 
     
    6) Impact de la théorie de l'environnement - mécanisme de la décohérence et rôle de la conscience.
    La décohérence permet de rendre compte du problème de la mesure, de l'effondrement de la fonction d'onde et de la disparition des interférences lors d'une mesure. La matrice densité devient diagonalisée. Mais une difficulté subsiste: une matrice densité diagonale n'a aucune raison de recevoir une interprétation probabiliste quand elle décrit un système individuel, au contraire, elle stipule plutôt leur coexistence. Il reste à expliquer pourquoi et comment la mesure ne donne qu'un seul résultat: cela sera vu dans un prochain chapitre. Néanmoins la décohérence donne une description claire et non ambiguë du processus de mesure: l'évolution de la matrice densité SAS de l'ensemble {appareil + système quantique} par l'équation de Schrödinger prend très rapidement une forme quasi-diagonale puisque les termes non diagonaux deviennent très petits.  
    Mais deux points sont à considérer. a) C'est parce qu'on ne considère pas les degrés de liberté de l'environnement que qu'on a le droit de se restreindre à la matrice densité SAS, sinon il serait nécessaire de considérer la matrice totale SASE qui, elle, n'est pas diagonale. b) En toute rigueur, si on attend suffisamment longtemps, les termes diagonaux peuvent redevenir non négligeables. Ces difficultés ont été écartées parce que faire une mesure mettant en évidence ces aspects est impossible en pratique (elles excéderaient de plusieurs ordres de grandeur nos possibilités, voire de l'univers entier). Ce sont des difficultés de fait et non de principe. Selon l'attitude philosophique que l'on adopte, les conséquences que l'on tire sur l'image du monde seront différentes.
    Pour le réaliste empirique pragmatique, le mécanisme de décohérence est l'explication définitive du problème de la mesure. La seule réalité ayant un sens est la réalité empirique des observations pratiquement réalisables. Après décohérence, elle est décrite par la matrice densité SAS diagonale (Il n'y a pas de sens de remarquer qu'il serait en principe possible de mesurer les effets non prédits par cette matrice puisque ces mesures sont infaisables en pratique). La réalité empirique est alors conforme à son apparence. 
    Le réaliste empirique de principe accepte le fait que l'apparence de la réalité empirique est expliquée par la décohérence tout en considérant que la réalité empirique en soi est différente. Cette réalité empirique, non accessible, dans laquelle la réduction du paquet d'ondes n'a pas lieu, et où les systèmes restent dans des états superposés. finalement, cette position est assez proche de celle des réalistes métaphysiques. Ces derniers considèrent que la décohérence ne fournit qu'une explication de l'apparence de la réalité en soi qui reste quantique dans son essence puisqu'aucun des points nécessaires au fonctionnement de la décohérence n'est satisfait par la réalité non empirique. Mais ces deux types de réalisme estiment censé de parler de propriétés non observables, alors que les réalistes empiriques pragmatiques affirment que la seule réalité ayant un sens est celle des observations pratiquement réalisables. 
     
    La décohérence semble donc permettre de se situer par rapport aux attitudes possibles. La première est de limiter la réalité aux phénomènes pratiquement observables en considérant comme dénué de sens de s'interroger sur tout ce qui se passe hors de ce cadre. La décohérence fournit alors une solution définitive (à la difficulté de "et-ou" près: l'état observé devrait être un "mélange" des états diagonaux possibles. Dans 50% des cas le chat de Schrôdinger est mort et dans 50% des cas, il est vivant. Or l'observation ne montre qu'un seul cas, réalisé à 100%. Le pourquoi de ceci n'est pas expliqué et fera l'objet d'un prochain chapitre).La deuxième est d'admettre qu'il existe une réalité des phénomènes qui échappe à nos possibilités de mesure, que cette réalité est profondément quantique, c'est seulement son apparence qui paraît classique. 
    Dans les deux cas, la conscience continue de jouer un rôle (rôle différent de celui que lui assignaient Wigner et Von Neuman, il n'est ici pas question de d'une quelconque action de la conscience sur les systèmes quantiques: elle pouvait en modifier l'état tout en restant elle-même à l'extérieur de toute description physique). Elle est responsable de la forme sous laquelle la réalité nous apparaît. Pour le réaliste empirique pragmatique, elle est limitée à ce que nos capacités humaines autorisent et ultimement, c'est elle qui détermine ces limitations. Pour le réaliste empirique de principe ou métaphysique, elle n'agit pas sur la réalité en soi, mais elle prescrit le cadre dans lequel celle-ci nous apparaît par les limites d'observations qu'elle nous impose. Cette solution (qui a des traits communs avec le kantisme) est plutôt satisfaisante, car il paraît naturel que la conscience joue un rôle dans le monde de nos perceptions. Ce rôle est cependant plus subtil que celui que voulaient lui faire jouer Von Neuman et Wigner. Cela n'explique pas ce qu'est la conscience, mais le fait qu'on n'avait pas pu éliminer ce rôle était un indice de son aspect essentiel
     
    7) Complément sur la théorie d'Everett. 
    Rappel: (source wikipédia): La théorie d'Everett, appelée aussi théorie des états relatifs, ou encore théorie des mondes multiples, est une interprétation de la mécanique quantique visant à résoudre le problème de la mesure quantique.

     

    Hugh Everett, qui l'a développée, estimait invraisemblable qu'une fonction d'onde déterministe donne lieu à des observations qui ne le sont pas, conséquence pourtant d'un postulat de la mécanique quantique, celui de la réduction du paquet d'onde. Ce postulat pose également un problème de cohérence mathématique avec le problème de la mesure quantique dans cette même théorie.

    Selon lui, la seule source d'anti-hasard possible était l'observateur lui-même, ou plus exactement : sa nature d'observateur qui lui était propre (le résultat qu'il observait le caractérisant lui-même en tant que cet observateur) et ne concernait pas l'univers qui restait parfaitement neutre et comportait toutes les possibilités prévues par la théorie quantique. Les possibilités par lui observées définissaient seules l'observateur, qui ne percevait donc que cet univers-là1

    Cette interprétation inhabituelle rappelant le principe de l'action et de la réaction fut exposée dans sa thèse de doctorat en 1957 sous la direction de John Wheeler (voir la biographie). Celui-ci, réticent au départ, devint par la suite partisan enthousiaste de cette théorie - certes la seule à rendre compte sans paradoxe de la mécanique quantique - et nombre de physiciens au nombre desquels David Deutsch et Colin Bruce la considèrent la seule possible à ne pas nécessiter quelque deus ex machina introduisant en permanence de l'anti-hasard dans l'univers. Sans indiquer réellement son opinion sur cette théorie, Murray Gell-Mann montre pour elle, dans son livre le Quark et le Jaguar, une sympathie bienveillante.

    On peut rapprocher cette théorie des calculs fondés sur l'ensemble des possibilités offertes au système, tels que l'intégrale de Feynman ou intégrale de chemin de Richard Feynman, ou le Principe des puissances virtuelles.

    La principale interprétation concurrente est l'interprétation transactionnelle de la mécanique quantique, plus étrange encore puisqu'elle fait l'hypothèse de messages allant dans les deux sens du temps.

     

     

     

     

    Le monde se scinde, à chaque mesure, en autant de branches qu'il existe de résultats possibles pour la mesure. Ces branches sont supposées être réelles simultanément même si elles ne peuvent pas communiquer entre elles. Mais il se présente une difficulté: cette interprétation ne spécifie pas ce qu'il faut entendre par mesure. Si les observateurs sont considérés comme des objets quantiques, alors il n'y a pas de différence entre une interaction avec un appareil de mesure et une interaction avec un observateur conscient, donc à chaque fois qu'un système dans un état superposé interagit avec un autre système qui se corrèle à lui, il se produit une mesure et une scission. Il y a ainsi multiplication des systèmes. De plus, une difficulté surgit:  dans l'exemple de la désintégration un branche correspond à un univers où une particule a un spin +  suivant Oz et c'est l'inverse pour l'autre particule. Il y a donc 4 particules dans ce "supermonde" pour les deux branches. Mais avant la désintégration, l'état  présente une symétrie sphérique et le spin peut s'exprimer suivant n'importe quel axe et rien ne nous permet d'en privilégier un. Comme il y a une infinité de directions, Bernard d'Espagnat fait remarquer qu'il n'y pas subdivision. Il devient donc difficile de préciser quand il doit y avoir subdivision car il y a similarité entre l'exemple précédent et le processus général de mesure, ou alors il faut admettre que l'univers se scinde en autant de branches qu'il y a de directions possibles (une infinité) ce qui est extrêmement peu satisfaisant.
     
    8) Le solipsime convivial (Hervé Zwirn...).
    Cette position suppose qu'il n'y a en fait jamais de division, que l'univers reste unique et que sa fonction d'ondes, incluant les observateurs et leur conscience, évolue uniquement selon les prescriptions de l'équation de Schrödinger (Celle-ci décrit un état enchevêtré). Il n'y a en fait jamais de division, que l'univers reste unique et que sa fonction d'ondes, incluant les observateurs et leur conscience évolue uniquement selon les prescriptions de l'équation de Schrödinger. C'est bien l'état dans lequel se trouve l'univers, incluant l'observateur après la mesure. Mais, comment l'observateur a, lui, conscience de n'avoir qu'un des résultats possibles et se sent dans un état réduit non superposé?
    Première phase. L'impression qu'a l'observateur dépend directement de ce qui est accessible à sa conscience: ce qu'il est capable de percevoir donc de mesurer. Il ne peut avoir conscience de d'effets non mesurables, que ce soit en principe ou en pratique. Il lui est donc impossible de faire la différence entre un système décrit par une matrice densité non diagonale et une matrice diagonale négligeant les degrés de liberté de l'environnement ou entre une matrice exactement diagonale et une matrice densité dont les termes non diagonaux redeviendront importants dans plusieurs milliards d'années. Pour cet observateur, tout se passe comme si le système était décrit par la matrice densité diagonale à laquelle le processus de décohérence permet d'aboutir, en fait comme si l'univers avait évolué, non dans pas l'état enchevêtré, mais dans l'état correspondant à une matrice densité diagonale pour l'électron et l'appareil. C'est ce qui permet de dire que la décohérence permet de résoudre le problème de la mesure. (à la difficulté du "ET-OU" près, signalées par Bell: si on ne s'intéresse qu'à un système individuel, on ne peut pas dire qu'il est dans un des états possibles décrits par la matrice. Il faudrait, au contraire, considérer dans tous les états à la fois, mais sans corrélations entre ces états. L'état observé ne l'est que de façon probabiliste).  
    Deuxième phase: La conscience de chaque observateur "sélectionne" ou "s'accorde à" ou "s'accroche à" un seul des états possibles. L'"accrochage" est ce qui fait que l'état de conscience sélectionne un et un seul des états de superposition et y accroche l'observateur. Il y a "un point de vue externe" selon Tergmak: "l'Univers, incluant les observateurs et leur conscience, évolue conformément à l'équation de Schrödinger et sa fonction d'ondes n'est jamais réduite. Elle demeure dans un état enchevêtré". Point de vue interne: "La conscience que peut en avoir un observateur dépend des limitations propres à la nature humaine qui l'empêchent d'être sensible à des différences faisant appel à des quantités non observables pour des raisons soit de principe soit de nature pratique. Tout se passe pour la conscience humaine comme si le système était décrit par la matrice densité diagonale. Intervient alors le mécanisme d'accrochage qui accorde la conscience de l'observateur à un seul des états possibles et c'est ce dernier processus qui élimine le problème du "ET-OU". Pour chaque observateur, l'état de conscience n'est alors relatif qu'à l'apparence pour lui d'univers dont la description exacte montre qu'il est en principe tout autre. Mais les limitations de la nature humaine font qu'il est impossible de prendre conscience de cette différence". Le vecteur d'état restant enchevêtré, on peut se demander si le mécanisme d'accrochage est en accord avec les prédictions de la mécanique quantique qui suppose qu'après une mesure, le système est dans un état réduit non superposé. On a vu que le système total incorporant l'observateur, sera après "interaction avec l'observateur" (interaction et non "prise de conscience"), dans un état superposé, qui ne rend pas compte de l'état de conscience non superposé de l'observateur. Pour faire la distinction, on dira que l'état superposé s'appliquera au cerveau, alors que par construction, l'état de conscience ne pourra jamais être dans un état superposé.
     
    Le mécanisme d'accrochage ressemble au principe de réduction du paquet d'ondes, mais il ne soulève pas les mêmes difficultés. Il ne concerne que la perception de l'observateur et pas l'état physique des systèmes. La conscience n'est pas un objet physique, "elle est, par rapport aux neurones et au cerveau, dans le même rapport que l'est un calcul aux puces d'un ordinateur" (cité par H. Zwirn). La description de l'évolution de l'état physique des circuits ne nous dit pas quel calcul a été effectué. Cela se situe au niveau de l'interprétation et du sens et non au niveau physique. Il en est de même avec la conscience pour laquelle on peut postuler qu'elle n'est pas soumise aux lois de la physique. Le monde physique évolue en étant soumis aux règles de la physique quantique (équation de Schrödinger) et la conscience fait à chaque instant une interprétation de l'état actuel du monde. Il n'est pas non plus nécessaire de postuler l'existence de deux types de substance: spirituelle et matérielle. Seule est supposée exister une substance matérielle soumise aux lois de la mécanique quantique.  Le mécanisme d'accrochage ne concerne que l'aspect perceptif des choses et il n'existe pas d'action de la conscience sur la matière. 
    De cette manière l'intersubjectivité est expliquée, non par un mécanisme garantissant que tous les observateurs perçoivent la même chose, car ils peuvent avoir des perceptions totalement différentes, mais au fait qu'il leur est rigoureusement impossible de se rendre compte de leurs désaccords. En effet, route communication passe par un processus physique, elle est analysable ultimement comme une mesure. Un observateur B qui interroge un observateur A sur ce qu'il voit effectue une mesure sur A. Le mécanisme d'accrochage assure que quelque soit l'état de conscience auquel est accroché l'observateur A (qui est physiquement dans un état enchevêtré), B n'obtiendra que des réponses en accord avec l'état de conscience auquel il est accroché. Nous n'en savons pas la raison, ni ni ce qui fait que tel ou tel choix est fait.Cela a une conséquence étrange sur l'indéterminisme de la mécanique quantique. Le mécanisme d'accrochage intervient pour sélectionner au hasard parmi les états de la matrice diagonale celui qui est perçu. L'indéterminisme devient alors un attribut de la conscience puisque l'univers physique en tant que tel évolue de manière rigoureusement déterministe, ce n'est plus Dieu, mais l'homme qui joue aux dés. Aucun des deux joueurs ne pourra jamais savoir ce que l'autre a vu et chacun pensera que l'autre a vu la même chose que lui. Si on est positiviste, on peut penser que cette question est dépourvue de sens. Comme chacun peut s'accrocher à une branche différente, en ce sens le monde empirique, ce que chacun observe, est différent pour chacun et il est créé par chaque conscience individuelle. Cette conception est proche du solipsisme, mais ici, est admise l'existence d'autres consciences avec lesquelles un accord est garanti, c'est un solipsisme convivial. Ce solipsisme convivial pousse à l'extrême les conséquences de la théorie de la théorie de la relativité (la simultanéité et les longueurs ne sont pas les mêmes pour deux observateurs différents). Cependant il existe une différence essentielle: deux observateurs relativistes se trouveront en désaccord s'ils se communiquent le résultat de leurs observations, alors que cela leur est interdit dans le cadre du solipsisme convivial qui préserve l'accord intersubjectif.  
    On peut avoir plusieurs attitudes face à se résultat; soit considérer que la fonction d'ondes reste superposée (comme Hervé Zwirn), soit qu'il existe des termes supplémentaires (non observés), produisant une réduction effective de la fonction d'ondes et une disparition des termes non corrélés de la conscience. Mais la recohérence semble poser des problèmes et il est plus économique d'éviter de postuler des termes supplémentaires. Un réaliste métaphysique ou un réaliste empirique de principe prendront comme fondamental le point de vue externe et notre état perceptif comme une approximation de la réalité. Le réaliste empirique pragmatique prendra au contraire le point de vue interne comme fondamental et considérera l''état physique enchevêtré comme un simple auxiliaire de calcul. Un positiviste trouvera cette discussion absurde et inutile. 
    L'interprétation du solipsisme convivial n'est ni vérifiable ni falsifiable et donc n'est pas "scientifique", mais c'est le cas de beaucoup d'interprétations. On est ainsi conduit à penser que nous vivons dans un monde bien étrange, l'univers en tant que tel nous est inaccessible (voir aussi le réel voilé de Bernard d'Espagnat). Seule notre réalité individuelle empirique nous concerne, elle est différente de celle des autres bien que nous n'ayons jamais aucun moyen de nous en rendre compte. Il peut paraître absurde de parler d'états superposés enchevêtrés de l'univers comme: je peux croire que je suis ici à P... en train de parler avec une personne qui se comportera comme si elle était effectivement en conversation avec moi, alors qu'elle sera, en ce qui la concerne, en train de bronzer sur une plage. Cependant il apparaît que la conception selon laquelle l'apparence d'un Univers dont la complexité dépasse nos limites humaines est conditionnée par les cadres conceptuels de notre conscience. cela pourra être le point de départ d'une réflexion sur "qu'est-ce qu'un état d'esprit"?
     

     

     

    Carole Dekeijser

     

    Artiste peintre belge: état d'âme N°7.

     

     

    Nos états d'âme sont une forme de synthèse entre notre vision du monde, notre état physique et les évènements qui nous touchent. C'est en quelque sorte une fusion entre ce qu'il se passe à l'intérieur et l'extérieur de soi, qui a pour résultat un mélange d'émotions et de pensées dont nous n'avons pas toujours conscience.
     
     
     
     
    Pin It

    2 commentaires
  •  

    Les limites de la connaissance 6) Réalisme et monde quantique

     6-1: introduction

     

     Conclusion de l'article: je pense que cette complémentarité représente l'aboutissement de la "fin des certitudes" dans la pensée humaine, un retour à la complémentarité corps-esprit (Jésus n'a-t-il pas dit "rend à César ce qui est à César et à Dieu ce qui est à Dieu"). 

    Nietzsche a écrit "Dieu est mort"... La désacralisation semble être "accomplie", le matérialisme se croît triomphant en ce début de "l'ère du Verseau". Rien n'est moins sûr. La précipitation des évènements mondiaux et personnels, l'augmentation de la violence et de l'absurde montrent peut-être que la complémentarité dont parle Bohr n'est pas bien assimilée et comprise??? 


    le chat de Schrödinger

     

    l'énergie du vide

    le laser.

     

     

     

    Préambule

     

    La science nous permettra-t-elle un jour de tout savoir? Ne rêve-t-elle pas d'une formule qui explique tout? N'y aurait-il rien qui entrave sa marche triomphale? Le monde deviendra-t-il transparent à l'intelligence humaine? Tout mystère pourra-il être à jamais dissipé?


    Hervé Zwirn pense qu'il n'en n'est rien.La science, en même temps qu'elle progresse à pas de géant marque elle même ses limites. C'est ce que montre la découverte des propositions indécidables qui ont suivi le théorème de Gôdel. Ou celle des propriétés surprenantes du chaos déterministe. Ou encore les paradoxes de la théorie quantique qui ont opposé Einstein et Bohr  en mettant en cause toute notre manière de penser.

    L'analyse de ces limites que la science découvre à sa propre connaissance conduit à poser une question plus profonde: qu'est ce que le réel?


    Exergue:

    "Comme Popper l'a remarqué, nos théories sont des filets que nous construisons pour attraper le monde. Nous ferions mieux de d'accepter le fait que la mécanique quantique a fait surgir un poisson plutôt étrange."      Redhead (1987).

    1) Les limites de la physique classique.


    Dans l'article sur le chaos déterministe nous avons vu que le paradigme de la mathématisation possible de la nature doit être revu. Quels que soient les moyens théoriques ou techniques dont on disposera, quel que soit le temps qu'on acceptera de passer sur une prédiction, il existera toujours un horizon temporel infranchissable dans les prédictions. Cet horizon est variable selon la nature du système et les limites de principe dans la précision qu'on peut obtenir sur les conditions initiales mais il est fini dans tous les cas. L'univers ne peut plus être considéré comme une grande machine dont il est possible de prévoir le comportement au moyen de formules mathématiques, même complexes. L'équivalence entre déterminisme et prédictibilité est morte. 

     

    La mécanique classique rencontre, par ailleurs, un autre type de limitation lié à son champ d'application. Il faut en effet lui substituer la théorie de la Relativité restreinte lorsque les vitesses ne sont plus négligeables devant la vitesse de la lumière (c = 300 000 km/s) ou de la Relativité générale dès que les champs de gravitation deviennent intenses. Toutes deux ont été découvertes par Einstein.

    Mais de plus, le champ d'application de la mécanique classique est limité aux objets de taille macroscopique. Dès qu'on s'intéresse aux objets dont la dimension est de l'ordre des dimensions atomiques (typiquement 10-10 m), la mécanique classique doit être remplacée par la mécanique quantique. Son efficacité est remarquable pour décrire le comportement des phénomènes subatomiques (électrons, protons, neutrons...). Elle explique la couleur des corps, le fonctionnement des semi-conducteurs, les propriétés des métaux, les niveaux d'énergie des atomes, la superfluidité...Aucun phénomène physique n'a nécessité sa révision. Mais c'est théorie étrange qui a soulevé de nombreuses questions d'interprétation qui ne sont pas toutes entièrement résolues, malgré les progrès de ces dernières années. Elle nous force à reconsidérer entièrement beaucoup d'idées intuitives que nous avons sur les propriétés des objets, sur les rapports entre l'observateur et le phénomène observé, sur le déterminisme et elle nous conduit à modifier radicalement la conception du monde qu'on pourrait légitimement construire à partir de la mécanique classique. 

    Quels que soient les problèmes soulevés, il s'agit toujours de problèmes d'interprétation du formalisme et jamais de problèmes d'application. Elle fonctionne remarquablement bien et c'est une des théories les plus précises qui ait été jamais été construites. L'interprétation du formalisme a conduit à des conséquences philosophiques qui semblaient contraires au bon sens ou à l'intuition. Bien que les débats ne soient pas tous clos, on peut considérer aujourd'hui que nous comprenons mieux ce qui est compréhensible en elle, et avons appris à ne pas chercher à comprendre (au sens de ramener à une image familière) ce qui ne l'est pas. 


    2) Premier contact: La nature et le comportement de la lumière et de la matière


             2-1) un problème insoluble en physique classique: "la catastrophe ultraviolette"

     

    La catastrophe ultraviolette, formulée dans la seconde moitié du xixe siècle et ainsi nommée par le physicien autrichien Paul Ehrenfest, est une prédiction contre-factuelle des théories classiques de la physique — électromagnétisme et physique statistique : uncorps noir à l'équilibre thermodynamique est censé rayonner un flux infini. Plus précisément, l'énergie rayonnée par bande de longueur d'onde doit tendre vers l'infini quand la longueur d'onde tend vers zéro, « dans l'ultraviolet » pour les physiciens de l'époque, puisque ni les rayons X ni les rayons gamma n'étaient alors connus.

    Cette anomalie montra l'échec des théories classiques de la physique dans certains domaines et constitua une des motivations pour la conception de la physique quantique : en 1900Max Planck en jeta les prémisses, permettant de résoudre le problème du rayonnement du corps noir avec sa loi de Planck.

    Un corps noir est modélisé par une cavité contenant de l'énergie sous forme d'un champ électromagnétique. En raison des conditions aux limites, le champ prend la forme d'une onde stationnaire admettant un ensemble discret de modes. Par exemple, les modes horizontaux d'une boîte ne peuvent avoir pour fréquence que

    \,\nu = nc/L

    où L est la longueur de la boîte, n un entier naturel non nul quelconque et c la vitesse de la lumière.

    Ci-dessous: illustration des conditions aux limites en dimensions 1 et image des modes propres discrets possibles (voir aussi les articles Corde vibrante et Onde stationnaire)

    Standing wave.gif

    Harmonic partials on strings.svg

    En électromagnétisme, on montre plus généralement que le nombre de modes par unité de fréquence de la cavité est proportionnelle au carré de la fréquence :

    \,\frac{\mathrm{d}N}{\mathrm{d}\nu} \propto \nu^2.

    En appliquant le théorème d'équipartition de l'énergie, chaque mode doit contenir une énergie kT/2, où k est la constante de Boltzmann et T la température du système. Il en résulte que l'énergie par unité de fréquence suit la loi de Rayleigh-Jeans :

    \frac{\mathrm{d}E}{\mathrm{d}\nu} \propto T\nu^2.

    Ainsi l'énergie par unité de fréquence tend vers l'infini lorsque la fréquence tend vers l'infini et l'énergie totale est infinie.

    Planck obtint pour la première fois un bon accord théorie/expérience en supposant que l'énergie électromagnétique, au lieu d'être continue comme dans la théorie classique, ne peut prendre que des valeurs discrètes multiples de h c/ λ, où c est la vitesse de la lumière dans le vide : c = 299.792.458 m.s-1, et h, la constante de Planck, vaut h = 6,625 × 10-34 J.s.

    Ce qui n'était alors qu'un « artifice de calcul » permet de trouver une formule qui correspond à l'expérience, la loi de Planck :

    Cette formule, comme on pourrait s'y attendre, redonne la formule classique si on fait tendre h vers zéro, c'est-à-dire si on considère l'énergie électromagnétique comme continue.

    C'est Einstein, qui, le premier, pour expliquer l'effet photoélectrique, considéra ce quanta de Planck comme réel. En fait, l'avènement de la physique quantique a donné un sens à cet « artifice de calcul » des premiers temps, et la raison de la quantification de l'énergie est maintenant comprise.

              2-2) la double nature de la matière et de la lumière.


              a) Savoir de quoi est constituée la lumière est une question que les hommes se sont toujours posée. Pythagore et Platon avaient chacun une théorie. Dans la première moitié du XIXe siècle, deux conceptions s'opposaient. La position dominante, celle de Huyghens, développée par Fresnel et Young stipulait que la lumière est faite d'ondes transversales de propageant à travers un milieu élastique , l'éther. La deuxième, anciennement avancée par Newton, était une conception corpusculaire. Dans la conception ondulatoire, la lumière se propageait plus rapidement dans l'air que dans l'eau, alors que c'était l'inverse pour la conception corpusculaire.   En 1850, Foucault réfuta l'hypothèse corpusculaire par une comparaison des vitesses. Par la suite, la notion d'éther fut remplacée par Maxwell et Hertz par celle d'ondes électromagnétiques transversales, mais ils continuèrent à admettre que la lumière était un phénomène ondulatoire. 

     

    fentes d'Young

    - Les interférences: un argument en faveur de la nature ondulatoireLes fentes de Young (ou interférences de Young) désignent en physique une expérience qui consiste à faire interférer deux faisceaux de lumière issus d'une même source, en les faisant passer par deux petits trous percés dans un plan opaque. Cette expérience fut réalisée pour la première fois par Thomas Young en 1801 et a permis de comprendre le comportement et la nature de la lumière. Sur un écran disposé en face des fentes de Young, on observe un motif de diffraction qui est une zone où s'alternent des franges sombres et illuminées.

     

    Cette expérience permet alors de mettre en évidence la nature ondulatoire de la lumière. Depuis, Elle a été également réalisée avec de la matière, comme les électronsneutronsatomesmolécules, avec lesquels on observe aussi des interférences. Cela illustre la dualité onde-particule qu'on évoquera par la suite: les interférences montrent que la matière présente un comportement ondulatoire, mais la façon dont ils sont détectés (impact sur un écran) montre leur comportement particulaire.

    Des expériences similaires aux fentes de Young impliquant des électrons ont été réalisées. En 1961, Claus Jönsson à Tübingen produisait des interférences avec un fil d'araignée métallisé séparant un faisceau d'électrons en deux. Une expérience semblable, avec un fil d'araignée métallisé, était réalisée en 1956 par Faget et Fert à l'université de Toulouse. En 1989, Tonomura et al. ont envoyé un électron sur un biprisme à électrons. Ils ont observé la figure d'interférence prédite par la théorie.

     

     

    Pour les interférences, l'explication est simple si on suppose que la lumière est composée d'ondes sinusoïdales qui peuvent suivre deux trajets différents: la distance parcourue n'est donc pas la même et selon le point d'arrivée, les rayons peuvent arriver en phase (la différence des longueurs des trajets est un multiple de la longueur d'onde), ou pas. Dans le premier cas, les rayons s'ajoutent donnant un point clair, dans le deuxième cas ils se retranchent, aboutissant à un point sombre. Une mesure de l'écartement des franges permet d'en déduire la longueur d'onde. Cette expérience est un argument fort en faveur de la nature ondulatoire de la lumière, car elle en fournit une explication naturelle. 


              b) L'effet photoélectrique: un argument en faveur de de la nature corpusculaire

     

    Il a été découvert en 1887 par Heinrich Rudolf Hertz qui en publia les résultats dans la revuescientifique Annalen der Physik[2].

    Albert Einstein fut le premier à en proposer une explication, en utilisant le concept de particule de lumière ou quantum, appelé aujourd'hui photon, initialement introduit par Max Planck dans le cadre de l'explication qu'il proposa lui-même pour l'émission du corps noir.

    Albert Einstein a expliqué qu'il était provoqué par l'absorption de photons, les quantum de lumière, lors de l'interaction du matériau avec la lumière.

     

    L'effet photoélectrique est l'émission d'électrons par un matériau, généralement métallique lorsque celui-ci est exposé à la lumière ou un rayonnement électromagnétique de fréquencesuffisamment élevée, qui dépend du matériau.

    Dans l'effet photoélectrique, on éclaire une plaque de métal et celle-ci émet des électrons. Les électrons ne sont émis que si la fréquence de la lumière est suffisamment élevée (la fréquence limite dépend du matériau), alors que leur nombre, qui détermine l'intensité du courant, est proportionnel à l'intensité de la source lumineuse.

    Cet effet ne peut être expliqué de manière satisfaisante lorsque l'on considère que la lumière est une onde, la théorie acceptée à l'époque, qui permet d'expliquer la plupart des phénomènes dans lesquels la lumière intervient, tel l'optique, et qui était traduite mathématiquement par la théorie de James Clerk Maxwell.

    En effet, si l'on considère la lumière comme une onde, en augmentant son intensité, on devrait pouvoir fournir suffisamment d'énergie au matériau pour en libérer les électrons. L'expérience montre que l'intensité lumineuse n'est pas le seul paramètre, et que le transfert d'énergie provoquant la libération des électrons ne peut se faire qu'à partir d'une certaine fréquence.

    L'effet photoélectrique, l'onde électromagnétique incidente éjecte les électron du matériau

    L'effet photoélectrique, l'onde électromagnétique incidente éjecte les électron du matériau

    L'interprétation de Einstein, l'absorption d'un photon, permettait d'expliquer parfaitement toutes les caractéristiques de ce phénomène. Les photons de la source lumineuse possèdent une énergiecaractéristique déterminée par la fréquence de la lumière. Lorsqu'un électron du matériau absorbe un photon et que l'énergie de celui-ci est suffisante, l'électron est éjecté; sinon l'électron ne peut s'échapper du matériau. Comme augmenter l'intensité de la source lumineuse ne change pas l'énergie des photons mais seulement leur nombre, on comprend aisément que l'énergie des électrons émis par le matériau ne dépend pas de l'intensité de la source lumineuse

     

    Cette proposition est révolutionnaire, car elle signifie à une conception corpusculaire de la matière, qui semblait pourtant avoir été réfutée. 


              c) Le comportement ondulatoire de la matière.

    L'effet photoélectrique n'est compréhensible que si la lumière est composé de particules, les photons. Mais, l'expérience des franges ne l'est que si la lumière est une onde. On est donc confronté à deux expériences cruciales donnant des résultats incompatibles. Louis de Broglie, en 1923, fit une hypothèse audacieuse, sachant que la relativité montre que la masse est une forme d'énergie (E=mc2et que l'énergie peut être reliée à la fréquence.

     "Mon idée essentielle était d’étendre à toutes les particules la coexistence des ondes et des corpuscules découverte par Einstein en 1905 dans le cas de la lumière et des photons. » « À toute particule matérielle de masse m et de vitesse v doit être "associée" une onde réelle » reliée à la quantité de mouvement par la relation :


    \lambda = \frac{h}{p} = \frac {h}{{m}{v}} \sqrt{1 - \frac{v^2}{c^2}}

    Cette théorie posait les bases de la mécanique ondulatoire. Elle fut soutenue par Einstein, confirmée par les expériences de diffraction des électrons de Davisson et Germer, et surtout généralisée par les travaux de Schrödingeroù λ est la longueur d'ondeh la constante de Planckp la quantité de mouvementm la masse au reposv sa vitesse et c la célérité de la lumière dans le vide.

    Cela permet de calculer la fréquence associée à une masse m:   v = mc2/h. La prédiction que la matière se comporte de matière ondulatoire paraissait insensée à l'époque (et encore maintenant?), tant il est évident que tout dans notre expérience prouve le contraire. la confirmation vint en 1927 quand Davisson et Germer observèrent  pour la première fois des figures de diffraction de faisceaux d'électrons avec un fréquence correspondant exactement à celle prévue par De Broglie. La symétrie entre ondes et corpuscules était rétablie; la lumière, comme la matière, manifestaient un comportement tantôt ondulatoire, tantôt corpusculaire. 


    Historique: La théorie en cours à l'époque pour expliquer l'atome était celle de Bohr (1913).     Ce modèle est un complément du modèle planétaire d'Ernest Rutherford qui décrit l'atome d'hydrogène comme un noyau massif et chargé positivement, autour duquel se déplace un électron chargé négativement.Le problème posé par ce modèle est que l'électron, charge électrique accélérée, devrait selon la physique classique, rayonner de l'énergie et donc finir par s'écraser sur le noyau.

    Niels Bohr propose d'ajouter deux contraintes :

    1. L'électron ne rayonne aucune énergie lorsqu'il se trouve sur une orbite stable (ou orbite stationnaire). Ces orbites stables sont différenciées, quantifiées. Ce sont les seules orbites sur lesquelles l'électron peut tourner.
    2. L'électron ne rayonne ou n'absorbe de l'énergie que lors d'un changement d'orbite.

    Pour commodité de lecture, les orbites possibles de l'électron sont représentées dans la littérature comme des cercles de diamètres quantifiés. Dans le modèle quantique, il n'existe en fait pas de position ni de vitesse précise d'un électron, et il ne peut donc parcourir un « cercle » ; son orbitale peut en revanche être parfois sphérique.


    C'est en 1926, avec la mécanique ondulatoire par Schrödinger et celle de la mécanique des matrices par Heisenberg, Born et Pascual Jordan, que que naît la mécanique quantique. Les deux formalismes seront ensuite intégrés par Paul Dirac la version actuellement en vigueur. Abandonnons à ce stade l'aspect historique pour examiner le comportement quantique.


              e) Le comportement quantique.

    L'objet qui servira d'exemple est l'électron, mais les comportements seront les mêmes pour tous les objets quantiques.

     

     

    e-1)Interprétation classique du phénomène pour la lumière.

    Schéma de principe des fentes de Young.

    Illustration de l'apparition de franges d'interférences.

    Dans l'expérience de Young, on utilise une source lumineuse S monochromatique1 et on interpose une plaque percée de 2 fentes. Celles-ci se comportent comme des sources secondaires S1 et S2. On observe alors, sur un écran placé derrière, des franges alternativement sombres et claires : les ondes issues de S1 et S2 interfèrent entre elles.

    Considérons maintenant un point M situé sur l'écran. Il est éclairé par les ondes lumineuses émises par S1 et S2 qui peuvent s'écrire respectivement, au point M :

     E_1 = E_0 \cdot \sin (\omega \cdot  t)\

     E_2 = E_0 \cdot \sin (\omega \cdot  t -\Delta\varphi)\ ,

    où E0 est l'amplitude2, ω la pulsation des ondes, Δφ leur déphasage et t le temps.

    Δφ caractérise le fait qu'une onde a un certain retard par rapport à l'autre. En effet, pour arriver au point M, le chemin à parcourir n'est pas de la même longueur pour la lumière qui provient d'une source ou de l'autre.

    Si Δφ est un multiple de 2π, les ondes s'ajoutent et on obtient une frange lumineuse sur l'écran, ce que l'on appelle une interférence constructive. En revanche si Δφ est un multiple impair de π alors les ondes s'annulent et on obtient une frange sombre sur l'écran, c'est alors une interférence destructive. Cela explique pourquoi on observe, sur l'écran, des franges successivement claires et sombres. Mais il n'y a pas, a priori, de formule simple permettant de décrire ces franges. Pour simplifier le problème, il est possible de supposer que l'écran est placé loin des fentes.

     

    e-2) Le comportement quantique des électrons.

    On reprend l'expérience faite avec des photons (lumière), mais avec une source ponctuelle d'électrons, vers une plaque comportant deux trous A et B. On peut imaginer qu'on place sur la deuxième plaque des détecteurs régulièrement espacés autour de la position centrale et qui font entendre un petit clic quand ils reçoivent un électron. Faisons l'expérience en bouchant le trou A et en laissant le trou B ouvert. On constate que les électrons arrivent bien un par un car jamais deux détecteurs ne cliquent en même temps. Si on attend suffisamment longtemps, on obtient la courbe de la figure du bas qui donne la répartition du nombre d'électrons reçus en fonction de la position (figure d'interférence). On observe un maximum en face du trou B. L'expérience symétrique (laisser le trou A ouvert et boucher le trou B) donne un résultat analogue, mais avec un maximum en face du trou A. 

    Ouvrons maintenant les deux trous simultanément: on  s'attend à ce que la courbe soit la somme des deux courbes précédentes. En effet, les électrons passent ou bien par A, ou bien par B, donc en tout point de la plaque. Le nombre d'électrons qui parviennent à la plaque est  la somme de ceux qui sont passés par A et de ceux qui sont passés par B. Les premiers vont construire la courbe présentant un maximum en face du trou A les seconds la courbe présentant un maximum en face du trou B. Le dispositif est symétrique, il y aura en moyenne autant d'électrons passant par chaque trou et la courbe totale sera bien donnée par la somme des deux courbes. 

    Mais, surprise! la courbe obtenue n'est pas du tout la somme des deux courbes à laquelle nous nous attendons, elle est identique à celle qui donne l'intensité lumineuse dans le cas de l'expérience avec des photons. On observe l'équivalent de franges d'interférences. Or, ces dernières sont la signature d'un comportement ondulatoire. Une tentative d'explication serait que les électrons, dont certains passent par le trou A et d'autres par le trou B, interagissent de telle manière que les chocs conduisent à ce qu'ils ne puissent arriver que dans certaines alternées de l'écran. Une telle théorie, certes complexe, est possible. Elle a été testée en réduisant progressivement l'intensité du faisceau jusqu'à être assuré que les électrons sont émis un par un avec un intervalle de temps suffisant entre chaque émission.Il devrait y avoir disparition des franges d'interférence. 


    Emission des électrons un par un:

     

     

    Les franges d'interférence se constituent petit à petit

    L'expérience de Young a par la suite été affinée, notamment faisant en sorte que la source S émette un quantum à la fois. Par exemple, on peut à l'heure actuelle émettre des photons ou des électrons un par un. Ceux-ci sont détectés un par un sur l'écran placé après les fentes de Young : on observe alors que ces impacts forment petit à petit la figure d'interférences. Selon des lois classiques concernant les trajectoires de ces corpuscules, il est impossible d'interpréter ce phénomène.

    L'interprétation quantique du phénomène est la suivante (voir chapitre suivant: quelques éléments de mécanique quantique): le quantum émis prend un état superposé lors du franchissement de la plaque : |quantum passe par S1> + |quantum passe par S2> (voir Notation bra-ket). De la fonction d'onde résultante, on peut déterminer pour chaque point de la plaque la probabilité que le quantum y soit détecté. On peut démontrer que la distribution des probabilités suit la figure d'interférence. Autrement dit, le quantum passerait par les deux fentes à la fois, et interfèrerait avec lui-même.

    Densité de probabilité d'un électron au passage des deux fentes

    La figure ci-contre montre l'évolution de la fonction d'onde d'un électron au passage des deux fentes. Les niveaux de gris représentent la densité de probabilité de présence de l'électron. La taille réelle de l'électron est en fait bien plus petite que sa zone de probabilité de présence (en forme de cercle) initiale. On voit nettement que l'électron "interfère avec lui-même": les franges d'interférences sont bien visibles aux sorties des deux fentes (l'électron possède aussi une certaine probabilité de "rebondir" et de former également une figure d'interférence vers l'arrière).




    Destruction de la figure d'interférence: éclairons maintenant les trous pour voir à travers lequel passe chaque électron. Problème de la mesure. 

    Ce n'est donc pas le choc des électrons qui les guide au bon endroit, mais on pourrait se dire qu'il suffit de regarder, électron par électron comment se fait-il que l'électron (ou le photon) interfère avec lui-même?  Quand un électron passe par le trou A, on verra un éclair proche du trou et symétriquement pour le trou B. Si un électron se coupe en deux, on observera deux éclairs simultanés. Que voit-on? On constate que chaque électron passe par un trou et un seul et que jamais un électron ne s'est coupé en deux (on n'observe jamais deux éclairs simultanés).  On peut même retracer, électron par électron par quel trou s'est fait le passage. On ne voit alors pas comment le résultat pourrait être différent de la somme des deux courbes correspondant chacune au bouchage d'un trou. Chaque électron est bien passé par un trou ou par un autre, nous l'avons vu. En effet, la courbe est bien conforme à ce que nous attendons, elle est la somme des deux courbes! Le fait d'avoir modifié le dispositif a changé le résultat et les franges d'interférence ont disparu. Les électrons se comportent dans ce cas comme des particules.

    Destruction de la figure d'interférence

    Le résultat net de l'expérience est qu'on détecte bien que le photon passe soit dans la fente de droite, soit dans la fente de gauche, mais alors la figure d'interférence disparait : le photon n'est plus dans un état superposé suite à la mesure. La détection du photon dans l'une des fentes provoque un "effondrement de la fonction d'onde" et de l'état superposé. Autrement dit, toute tentative de savoir de quel côté le quantum est passé ne permet plus d'obtenir des interférences.

    L'expérience de Young permet donc également de mettre en évidence le problème de la mesure quantique. Ce problème est que les lois quantiques ne prévoient pas directement cet effondrement, et qu'il n'existe donc pas de définition objective et rigoureuse de ce qu'est une "mesure" (voir traitement complet de ce problème dans les articles Chat de Schrödinger et Problème de la mesure quantique).

    Exemple de fullerène, aussi appelé « footballène »

    A l'heure actuelle, des développements sur le sujet permettent de réaliser des expériences très similaires sur des objets de plus en plus volumineux, comme les atomes, les molécules, les condensats de Bose-Einstein.

    En particulier, on a observé des interférences avec des molécules de fullerène.3 Ces expériences démontrent que la vision purement corpusculaire de la matière n'est pas satisfaisante avec des objets de plus en plus gros, d'où la question récurrente de la dualité onde-corpuscule en physique quantique.

     




              2-3) En conclusion de ce chapitre 2 on peut dire que cette expérience renferme l'essentiel du mystère du comportement quantique. 

    Les électrons se comportent tantôt comme des ondes, tantôt comme des particules. C'est ce que Bohr appelait la "complémentarité". Cela ne dit pas être entendu comme la complémentarité de deux aspects coexistant, comme le serait, par exemple la description d'un cylindre par ses projections circulaires et rectangulaires. Elle implique une exclusion, chaque aspect se manifestant au détriment de l'autre.  Aucun objet habituel ne se comporte de cette manière. Comme le dit Feymann: "On peut se demander comment ça marche vraiment. Quel est le mécanisme en oeuvre en réalité? Personne ne connaît aucun mécanisme. Personne ne peut vous donner de ce phénomène une explication plus profonde que la mienne - c'est à dire une simple description."


    Pour Bohr: "De même que le concept de relativité exprime que tout phénomène physique dépend essentiellement du système de référence qui sert à l'encadrer dans l'espace et le temps, de même le concept de Complémentarité est un symbole de la limitation, fondamentale, en physique atomique, de notre représentation habituelle de phénomènes indépendants des moyens d'observation".  


     

    En 1927 Bohr précise:
    " en d'autres domaines de la connaissance nous rencontrons des situations rappelant ce que nous connaissons en physique quantique...
    Ainsi l'intégrité des organismes vivants et les caractéristiques de la conscience des individus autant que celle des cultures humaines présentent des traits d'un tout, qui impliquent pour en rendre compte un mode de description complémentaire"

    Bohr se réfère souvent à Möller un psychologue-philosophe qui écrit à propos d'un étudiant cherchant en vain un emploi :

    " Mes spéculations sans fin m'interdisent d'arriver à quoi que ce soit. Qui plus est j'en viens à penser à ma propre pensée de la situation où je me trouve. Et même je pense que j'y pense et je me scinde en une suite infiniment régressive de "moi" qui se scrutent les uns les autres. Je ne sais sur quel moi me fixer, comme étant le moi effectif et de fait au moment même de m'arrêter à l'un d'eux il est encore un autre moi qui s'y arrête. Je m'y perds, et j'en ai le vertige, comme à plonger du regard dans un abîme insondable et je retire de mes méditations une migraine abominable..."

     


     

    Bohr se réfère également aux travaux  de James ( psychologue) qui définit lui aussi un concept de complémentarité:

    " ...chez certaines personnes la conscience globlale susceptible d'exister peut éventuellement se scinder en parties qui coexistent tout en restant dans l'ignorance mutuelles les unes par rapport aux autres...et se répartissent entre elles les objets de connaissance.
    Accorder un objet à l'une des consciences c'est par là même le soustraire à l'autre ou aux autres. Si l'on excepte un certain fond commun comme la capacité d'user du langage etc...ce dont le moi supér
    ieur a connaissance le moi intérieur reste ignorant et vice versa"

     


     

    Oppenheimer généralisera:

    " La compréhension de la complémentarité de la vie consciente et de son interprétation physique me parait un élément permanent de l'intelligence humaine et l'expression exacte des vieilles conceptions connues sous le nom de parallélisme psychophysique...
    Car la vie consciente et ses relations avec la description du monde physique offrent encore bien d'autres exemples
    relation entre les faces intellectives et affectives de nos vies...entre la connaissance ou l'analyse et l'émotion ou le sentiment...
    relation entre l'esthétique et l'héroïque...entre le sentiment et l'obligation morale qui précède et définit l'action...
    relation entre classique entre l'auto-analyse, la détermination de ses mobiles et de ses fins personnels et ce libre arbitre cette liberté de décision et d'action qui lui sont complémentaires...

    Être affecté par la crainte ou la gaieté, être ému par la beauté, prendre un engagement ou une détermination, comprendre quelque vérité autant de modes complémentaires de l'esprit humain...
    Tous sont partie intégrante de la vie spirituelle de l'homme...
    aucun ne peut remplacer les autres... et lorsque l'on fait appel à l'un les autres sont en sommeil...

    La fécondité et la diversité de la physique, celles plus considérables de l'ensemble des sciences de la nature, la richesse plus familière mais encore étrange et infiniment plus grande de la vie de l'esprit humain, accrues par des moyens complémentaires, non immédiatement compatibles et irréductibles l'un à l'autre sont plus qu' harmonieuses,
    elles sont éléments de la peine de l'homme et de sa splendeur, de sa débilité et de sa puissance, de sa mort, de son existence éphémère et de ses immortels exploits..."


     

     

    Le philosophe et scientifique Lupasco va plus loin...
    pour lui le problème vient que l'homme reste marqué par la la logique classique marquée par la notion d'objet et par le principe de non contradiction...

    Or cette logique binaire n'arrive pas à rendre compte de l'infinie diversité du Réel...
    pour lui l'antagonisme est à la base de tout...
    et l'univers est par nature contradictoire...
    Pour lui le comportement quantique est fondamental... car au fond des choses dans la mesure où il est la loi des phénomènes microscopiques à la base de l'Univers...

    Il refuse la logique classique du oui ou du non, pour lui seule une logique du tiers inclus peut rendre compte de la réalité
    Actualisation- Potentialisation- état t ...
    l'actualisation est ce que l'on mesure...
    la potentialisation ce qui existe... et qui n'est pas pris en compte
    t   l'équilibre entre les deux... l'état auquel on doit arriver

    Nicolescu ( physicien)  introduit dans le schéma précédent la notion de niveau de Réalité ... qu'il ne faut pas confondre avec le niveau de représentation des choses ou d'organisation.
    le niveau de réalité correspond à des systèmes qui restent invariants sous l'action d'une loi: exemples l'échelle des particules, l'échelle de l'homme  ou encore l'échelle des planètes
    ainsi ce qui est contradictoire à un niveau 1 ( onde-corpuscule, séparabilité-non-séparabilité) peut être unifié au niveau 2 avec l'état t ( comme le montre le triangle ci dessous...
    unification par le haut en quelque sorte...)


     

     En conclusion, je pense que cette complémentarité représente l'aboutissement de la "fin des certitudes" dans la pensée humaine, un retour à la complémentarité corps-esprit (Jésus n'a-t-il pas dit "rend à César ce qui est à César et à Dieu ce qui est à Dieu"). 

    Nietzsche a écrit "Dieu est mort"... La désacralisation semble être "accomplie", le matérialisme se croît triomphant en ce début de "l'ère du Verseau". Rien n'est moins sûr. La précipitation des évènements mondiaux et personnels, l'augmentation de la violence et de l'absurde montrent peut-être que la complémentarité dont parle Bohr n'est pas bien assimilée et comprise??? 


    Prochain article: Les limites de la connaissance 6) Réalisme et monde quantique 

    6-2: éléments de physique quantique

    Pin It

    votre commentaire
  •  

    Les limites de la connaissance 5) déterminisme et chaos. 

    deuxième partie: le chaos déterministe

     

     

     

     

     

    fractale: ensemble de Julia

    fractale: chou romanesco

     

     

     

    Préambule

     

    La science nous permettra-t-elle un jour de tout savoir? Ne rêve-t-elle pas d'une formule qui explique tout? N'y aurait-il rien qui entrave sa marche triomphale? Le monde deviendra-t-il transparent à l'intelligence humaine? Tout mystère pourra-il être à jamais dissipé?


    Hervé Zwirn pense qu'il n'en n'est rien.La science, en même temps qu'elle progresse à pas de géant marque elle même ses limites. C'est ce que montre la découverte des propositions indécidables qui ont suivi le théorème de Gôdel. Ou celle des propriétés surprenantes du chaos déterministe. Ou encore les paradoxes de la théorie quantique qui ont opposé Einstein et Bohr  en mettant en cause toute notre manière de penser.

    L'analyse de ces limites que la science découvre à sa propre connaissance conduit à poser une question plus profonde: qu'est ce que le réel?



    Les limites de la connaissance 5) déterminisme et chaos. 

    deuxième partie: le chaos déterministe


     

    Idées générales de l'article:

    Le paradigme de la possible mathématisation de la nature doit être revu. Quels que soient les moyens théoriques ou techniques dont on disposera, quel que soit le temps qu'on acceptera de passer sur une prédiction, il existera toujours un horizon temporel infranchissable dans les prédictions

    L'univers ne peut plus être considéré comme une grande machine dont il est possible de prévoir le comportement au moyen de formules mathématiques, même complexes.  L'équivalence entre déterminisme et prédictibilité est morte. On peut croire que le monde dans lequel nous vivons est déterministe (ce que nuance la physique quantique, voir le prochain article), il n'en n'est pas moins non-prédictible. C'est ce que signifie l'expression "chaos déterministe".



    1) Présentation du problème.


    Afin d'effectuer des prédictions sur les grandeurs physiques, on utilise les lois qui en régissent l'évolution et la considération du système est indissociable de celle de celle de ces lois. Se donner la description d'un système correspond à modéliser la réalité. Un "modèle" est l'ensemble constitué par la spécification d'un système physique et la donnée des lois auxquelles il obéit. Il est utilisé pour décrire une portion du monde. 

    Comme on l'a vu dans l'article 3), le déterminisme des lois est habituellement toujours associé à la prédictibilité. Il est légitime de s'attendre à ce qu'on puisse prédire les états futurs en appliquant à l'état initial la fonction déterministe qui transforme cet état en l'état à un instant t ultérieur quelconque. On est parfois obligé de procéder par approximations en raison de la trop grande complexité des résultats, mais ces approximations sont suffisamment précises pour que l'incertitude sur les prédictions soit maîtrisée et limitée. Négliger une quantité inférieurs à une certaine valeur se traduit par une incertitude du même ordre de grandeur sur le résultat et de petites modifications entraînent de petits effets. On peut prouver que les systèmes régis par des équations différentielles linéaires adoptent toujours ce comportement agréable. Jusqu'à une date récente, le sentiment dominant était que la majeure partie des systèmes dynamiques se comportait de cette manière. En fait, on avait toujours privilégié l'étude des systèmes intégrables. Mais avec la mécanique céleste, les travaux de Poincaré on montré que cet espoir était vain. On découvrit petit à petit que cette difficulté, loin d'être exceptionnelle, était le règle pour de très nombreux systèmes dynamiques non linéaires. Un petite erreur sur l'état initial s'amplifie de manière exponentielle, et l'évolution, bien que parfaitement déterministe est imprévisible! Poincaré était conscient de ces limites qui signifient l'échec de la méthode analytique et l'impuissance des mathématiques à calculer le comportement d'un système physique aussi simple que celui de trois corps en interaction gravitationnelle. 

    Devant son impuissance à calculer exactement les trajectoires, il s'intéressa à leur représentation dans l'espace des phases. 

     

     

    Les physiciens ont l'habitude de travailler dans ce qu'on appelle "l'espace des phases", qui est un espace imaginaire, ici à 4 dimensions (les 2 coordonnées de dimension des positions et la quantité de mouvement = produit masse X vitesse). A chaque instant, l'objet observé (une boule par exemple), a une certaine position (Qx, Qy) et une quantité de mouvement (Px, Py), son état est don déterminé par ces 4 coordonnées, 2 de position et 2 de vitesse. On dit que le système a 2 degrés de liberté et on lui associe un point de coordonnées (Qx, Qy, Px, Py) dans l'espace des phases à 4 dimensions. D'une manière générale, l'état d'un système est déterminé par N coordonnées de position et N coordonnées de vitesse, soit N degrés de liberté.

     


    2) Comportement des systèmes mécaniques.


              a) Premier exemple: L'espace des phases et le pendule sans frottement.


     

    Poincaré fera un grand usage de cet espace pour introduire desraisonnements géométriques en mécanique céleste et pour étudier le problème des trois corps. Ces études seront à la base de la théorie du chaos.

    Concrètement, dans l'exemple d'un gaz constitué de N particules, l'espace des phases sera à 6N=2M dimensions. On aura 3N coordonnées de position et 3N coordonnées de quantité de mouvement  . Ces coordonnées sont dites généralisées car elles peuvent correspondre à différents systèmes de coordonnées cartésiens, sphériques, hyperboliques etc...

    Plus généralement, les coordonnées généralisées   et   représentent des variables conjuguées d'un système mécanique arbitraire. Dans le cas d'un gyroscope, d'une toupie ces coordonnées seront des angles dans le premier cas et des moments cinétiques dans le second.

     

     

    La trajectoire d'un système mécanique est donc représentée par celle d'un point à 2M coordonnées dans l'espace des phases. Si l'on considère différentes conditions initiales, on aura différentes courbes dans cet espace. Dans le cadre de la mécanique statistique cela permettra d'étudier le comportement moyen d'un ensemble de systèmes mécaniques identiques sous la forme d'un fluide de particules. En théorie du chaos, l'espace des phases permet de visualiser que les trajectoires de systèmes non-linéaires avec différentes conditions initiales se retrouvent  parfois proches de certaines formes géométriques dans cet espace. On parle alors d'attracteur étrange car tout se passe comme si ces formes étranges attiraient les points représentant un système mécanique pour les forcer à rester dans leur voisinage.

    Considérons maintenant le système physique constitué par un pendule de longueur l supposé sans frottement. Son état est défini par l'angle θ

     

     

    \ddot{\theta} + \omega_0^2 \sin\theta = 0  avec  \omega_0^2 = \frac{g}{l} et \ddot{\theta} = \frac{d {\dot{\theta}}}{d t}

     

     pour de petites oscillations, on peut confondre sin(θ) avec θ. On obtient alors l'équation :
    \ddot{\theta} + \omega_0^2 \theta = 0 avec   \omega_0^2 = \frac{g}{l}

     

    Cette équation se résout (s'intègre) et sa solution est:

    \theta(t) = \theta_0 \cos(\omega_0 t)\, ; de période  T_0 = \frac{2\pi}{\omega_0} = 2\pi\sqrt\frac{l}{g} .

    On a donc remplacé l'étude de l'équation qui représente exactement le mouvement du pendule, mais qui est difficile à résoudre, par une équation plus simple à résoudre, mais qui ne représente qu'approximativement le mouvement. Liapounov a montré en 1895 que c'était justifié pour de petits angles, et d'autant meilleure que l'angle est petit. L'espace des phases est ici un espace à 2 dimensions avec pour coordonnées l'angle θ et la vitesse angulaire d θ/dt.

    Ecarté de la verticale, le pendule va osciller  de part et d'autre. Le mouvement sera périodique et la trajectoire dans l'espace des phases sera une ellipse (l'équation du mouvement est sinusoïdale). Pour un angle différent, l'ellipse aura la même forme mais sera à l'intérieur de la précédente si l'angle est plus petit, ou à l'extérieur pour un angle plus grand. Si on imprime une vitesse initiale, il existe un seuil au-delà duquel, le pendule va dépasser la verticale et tourner autour de son axe, mais l'équation du mouvement devient non linéaire et non explicite en fonction du temps, l'approximation des petits angles ne convient plus, il faut faire appel aux fonctions elliptiques. Alors que faire? Dans le cas du pendule, la méthode permettant de connaître toutes les trajectoires dans l'espace des phases est fondée sur le fait que l'énergie du système est conservée au cours du mouvementLes trajectoires sont donc des courbes d'équation E = constante. L'ensemble de toutes les trajectoires dans l'espace des phases, valable pour toutes les conditions initiales, est donné par le graphique suivant appelé "portrait de phase" du pendule. La limite, la ligne ondulée, représente les mouvements pour lesquels le pendule tourne autour de son axe.


     

     Mais il faut remarquer que cela s'est fait au détriment de la possibilité de décrire ces mouvements en fonction du temps. Bien que l'équation du mouvement soit non linéaire, le pendule a un comportement conforme au paradigme classique (si on part de deux conditions initiales proches, les trajectoires seront voisines l'une de l'autre et une petite erreur sur leur détermination aura comme comme conséquence une petite erreur sur les trajectoires). Un tel système sans frottement est "non dissipatif". Son énergie totale reste constante lors de son évolution, il est dit "conservatif" ou "hamiltonien". On dit alors que l'énergie est une intégrale du mouvement. De plus, on constate que toutes les trajectoires sont périodiques. 

    Cette méthode utilisée pour le pendule sera aussi applicable pour des systèmes décrits par des équations non intégrables. Elle consiste à examiner le portrait de phases, ensemble des trajectoires possibles dans l'espace des phases du système. Dans le cas du pendule, la conservation de l'énergie permet de le tracer aisément. Dans le cas général, on peut procéder par extrapolations successives. En effet, en chaque point de l'espace des phases, l'équation fixe l'orientation de la tangent à la trajectoire. On peut ainsi tirer des enseignements sur le comportement du système, mais au détriment de la dépendance directe en fonction du temps qui n'est plus accessible. Cela conduit à se concentrer sur le comportement à long terme, qu'on appelle "comportement asymptotique". La réponse à cette question est donnée par la forme asymptotique des trajectoires dans l'espace des phases (des trajectoires à très long terme). Dans la cas du pendule sans frottement, à chaque condition initiale correspond une trajectoire différente, un ellipse ou une ligne ondulée dans l'espace des phases.


               b) Le pendule amorti et l'oscillateur de Van Der Pol.

    Un pendule sans frottement n'est que théorique, un pendule réel, soumis à des forces de frottement, n'est pas périodique et finit toujours par s"arrêter. L'énergie ,'est pas constante mais décroît. Ce n'est pas un système non dissipatif conservatif, mais un système dissipatif amorti. 

    L'équation qui le décrit est:  avec . L'énergie varie selon la loi dE/dt = -λd \theta\,/dt (avec λ = amortissement). Si λ  > 0 le pendule oscille de manière d'autant plus réduite que sa vitesse est grande, pour s'immobiliser à la verticale, au point 0 (angle et vitesse nulle) de l'espace des phases. Les trajectoires de phases sont des spirales aboutissant à ce point 0, "appelé attracteur point fixe". Il caractérise le comportement à long terme du pendule, la forme asymptotique des trajectoires de ces oscillations amorties.

    Modifions la forme des équations avec un terme qui joue un rôle d'amortissement pour les grandes amplitudes, mais d'amplification pour les petites amplitudes. On aura alors un "oscillateur entretenu" ou de "Van Der Pol". Son équation est: 


    Intuitivement on peut voir qu'il va osciller de manière régulée. Quand l'amplitude des oscillations est grande, le facteur complémentaire joue le rôle d'un amortisseur, et celui d'amplificateur quand elles sont petites. Le comportement à long terme tend vers une trajectoire fermée unique et stable autour de l'origine, appelée "cycle limite" par Poincaré. Ce cycle limite est donc un attracteur, comme le point fixe "0" vu précédemment. Dans cet exemple, le comportement du système à long terme reste encore périodique et donc prédictible. C'est une des caractéristiques des systèmes dont l'espace des phases est à 1 ou 2 dimensions: leurs mouvements sont réguliers et en fait leurs équations sont toujours intégrables. 


                 c) Les trajectoires quasi périodiques

    La configuration d'un système à N degrés de liberté est défini par N variables de position pi (p correspond à xi et qi correspond à mvi) et N variables de quantité de mouvement qi. Son espace des phases est à 2N dimensions et peut être décrit par  un ensemble de 2N équations différentielles, ce sont les équations de Hamilton. Intégrer le système, quand c'est possible, revient à trouver un changement de variables permettant de découpler les 2N équations pour les ramener à N ensembles, non liés de deux équations représentant chacun un système à un degré de liberté. Les nouvelles coordonnées deviennent (I,\theta\,), appelées "actions" et angles" et le hamiltonien ne dépend plus que de les variables d'action: H = H(I). Les N systèmes  de deux équations du mouvement deviennent simples et peuvent être intégrés. On aboutit à des trajectoires périodiques (cercles), parcourues à fréquence constante dans les sous-espace de phase correspondant. On a donc un produit de cercles, chacun avec une fréquence propre. La trajectoire du système est alors contenue dans un tore de dimension N qu'on note Tn . (Le produit de deux cercles revient à à faire effectuer à un des cercles un mouvement de rotation en suivant l'autre cercle. Le résultat ressemble à un pneu ou à une chambre à air). Chacune des variables d'action H(I) est une constante du mouvement. Pour un système linéaire, on peut toujours trouver un tel changement de variables (il est donc intégrable). Mais c'est beaucoup plus rare quand le système n'est pas linéaire. Il es résulte que lorsqu'un système à N degrés de liberté est intégrable, il existe N constantes de mouvement. En revanche, s'il est impossible de trouver N constantes de mouvement, le système n'est pas intégrable. (c'est la méthode découverte par Liouville et dont Poincaré a montré qu'elle ne s'appliquait pas au problème de trois corps).

    Le point qui représente l'état du système à un instant se déplace dans le temps en combinant les deux mouvements de rotation possibles, ce qui aboutit à le faire s'enrouler en spirale autour du tore. Si le rapport f1/f2 des fréquences de rotation est est rationnel, la trajectoire complète est périodique et le point revient exactement à son point de départ (par ex: 2/5 donne 2 tours sur le 1e cercle et 5 tours sur le 2e). Mais si ce rapport est irrationnel, jamais le système ne reviendra à son point de départ, mais il repassera arbitrairement près de ce point si on attend assez longtemps (cela résulte d'une propriété des nombres rationnels dans l'ensemble des nombres réels appelée "densité", à savoir qu'un nombre réel peut être approché arbitrairement près par un nombre réel)La trajectoire n'est plus périodique, elle couvre de façon dense la surface du tore en repassant arbitrairement près de son point de départ, c'est pour cette raison qu'on appelle quasi périodique ce type de mouvement.

    Résumé: tout système conservatif à N degrés de liberté, lorsqu'il est intégrable (ce qui est loin d'être toujours le cas), adopte un comportement périodique ou quasi périodique dont la trajectoire s'inscrit dans un tore de dimension N. Si le rapport des fréquences est rationnel, le mouvement est périodique et la trajectoire s'inscrivant sur le tore. Sinon le système est quasi périodique et la trajectoire couvre le tore de façon dense.


              d) Trajectoires périodiques, quasi périodiques et prédictibilité.

    La démonstration de Poincaré montre que tous les systèmes conservatifs ne sont pas forcément intégrables, ceux qui le sont étant plutôt l'exception. Pour le problème des trois corps, Poincaré a prouvé qu'il n'existe pas de constante de mouvement autre que l'énergie et les projections du centre de masse et du moment cinétique sur les 3 axes, soit 7 constantes du mouvement. Si le problème était intégrable, il comporterait 9 quantités conservées puisque le système a 9 degrés de liberté. Comment faire alors pour pour traiter le problème? 

    Dans le cas de la mécanique céleste, bien qu'il ne soit pas intégrable, le problème en est proche car la perturbation qu'apporte chaque planète au mouvement des autres est faible devant l'effet gravitationnel du soleil. On peut alors encore trouver des coordonnées (I,\theta\,)  pour lesquelles  H(I, ) Ho(I) + εΗ1(I,) avec ε petit-->0Le mouvement régi par le hamiltonien Ho(I) est intégrable puisqu'il ne dépend que de I. Il représente le mouvement Képlérien des planètes. Le hamiltonien  εΗ1(I,) représente les perturbations et est petit devant H. La méthode des perturbations revient à trouver de nouvelles coordonnées (I',') sous forme de séries par rapport à ε et telles que le hamiltonien ne dépend plus que de I'. La difficulté n'est liée qu'à la complexité des calculs, qui est accrue pour chaque terme complémentaire. 

    Cependant, la méthode semblait créer des anomalies dans les résultats. La raison en est que ces séries ne sont pas convergentes et leur utilisation n'a qu'une portée limitée. Au-delà d'un certain nombre de termes, les calculs s'éloignent du vrai résultat et les conclusions sont alors fausses: la méthode analytique trouve ici ses limites. Comme on l'a vu précédemment, Poincaré a développé des méthodes plus qualitatives, mais avec l'impossibilité de d'obtenir la dépendance explicite des coordonnées en fonction du temps. Cela conduit à se limiter à l'étude de la forme des trajectoires dans l'espace des phases et à ne s'intéresser qu'à leur forme asymptotique. Mais même ainsi, le problème reste en général trop complexe. Pour cette raison, Poincaré fut amené à développer des méthodes de simplification permettant d'obtenir des renseignements sur les trajectoires (présence de périodicité, stabilité) sans avoir à manipuler leurs équations complexes.


               e) Section de Poincaré.


    L'espace des phases permet d'obtenir des informations sur le comportement à long du système terme sans résoudre explicitement les équations du mouvement. Malheureusement, il est en pratique extrêmement complexe, voire totalement impossible d'y étudier directement les trajectoires.  Dans le cas du problème à 3 corps, il est déjà à 18 dimensions (3 corps avec pour chacun 3 coordonnées d'espace et 3 pour la quantité de mouvement). On commence par s'intéresser au comportement asymptotique (à long terme) en laissant de côté les comportements transitoires. Ensuite, au lieu d'étudier une trajectoire dans l'espace des phases complet, on s'intéresse aux intersections avec un plan qui la coupe. On obtient dans ce plan un ensemble de points qui forme "une section de Poincaré".
    Pour représenter intuitivement cette description, plaçons nous dans un espace des phases à 3 dimensions. Une trajectoire périodique simple sera par exemple une courbe fermée revenant à son point de départ après un tour. Pour une telle trajectoire, notée [P(0)] sur le schéma, la section de Poincaré sera réduite au point 0, intersection de la courbe fermée avec le plan. Une trajectoire périodique qui fait 3 tours avant de revenir à son point de départ aura 3 une section constituée de 3 points [x, P(x), P2(x)] sur le schéma. Une telle simplification ne permet certes pas de connaître la forme précise de la trajectoire, mais elle permet d'obtenir des renseignements qui seraient inaccessibles par l'étude directe. Pourquoi? On vient de voir qu'une trajectoire périodique était caractérisée par une section de Poincaré constituée d'un ensemble fini de points. Or, dans certains cas, il est possible de calculer explicitement la transformation (dite "application du premier retour") qui permet de passer d'un point à un autre dans la section de Poincaré. De cette manière il est alors possible de savoir si la trajectoire est périodique. C'est ainsi que Poincaré s'y est pris pour le problème des 3 corps. La section de Poincaré sera en effet l'intersection du tore que couvre de façon dense la trajectoire quasi périodique avec le plan de coupe (courbe fermée continue). 


              f) Les comportements chaotiques.

    Pour certaines conditions initiales, les trajectoires correspondantes d'un système non intégrable ont une section de Poincaré qui n'est ni réduite à un point, ni analogue à une courbe fermée continue, mais semble remplir toute une région de manière aléatoire. Elles n'ont aucune régularité et apparaissent chaotiques. Dans la démonstration de Poincaré, toute loi de conservation supplémentaire aurait permis de contraindre les trajectoires à se trouver sur les courbes analytiques ayant une forme lisse. Il suffit alors de trouver une trajectoire qui ne respecte pas cette contrainte pour montrer qu'il n'existe pas d'autre loi de conservation. Or Poincaré montra qu'il existe une infinité de trajectoires qui ne se trouvent pas sur une telle courbe (dans ce qu'on appelle l'enchevêtrement homocline). Dans une version simplifiée du problème des 3 corps (problème restreint de hill), on considère que le 3è corps a une masse négligeable devant celles des 2 autres. Les 2 corps massifs se déplacent dans un plan sur des ellipses ayant un foyer commun. On suppose que le 3è corps se déplace sur une droite perpendiculaire au plan et passant par le foyer commun. Sa vitesse et sa position sont représentées par un point dans un plan qui est un sous-ensemble de l'espace des phases complet. On prend ce plan comme section de Poincaré. Ainsi, en étudiant ce qui se passe au voisinage d'une trajectoire périodique matérialisée par un point unique, on obtient une figure qui a une complexité telle qu'elle a fait dire à Poincaré "...je ne cherche même pas à l'expliquer...". 

    Comme on s'est placé dans l'espace des phases, la signification de ce résultat est la suivante: Si les conditions initiales d'un système à 3 corps sont telles que celui-ci adopte un mouvement périodique, une modification infime de ces conditions amène le système à adopter un comportement chaotique. Comme par ailleurs il n'est pas possible de connaître avec une précision infinie les conditions initiales d'un système physique réel, il deviendra impossible de prévoir le comportement asymptotique du système. 

     

    3) Le chaos dans la nature.

     

              a) Un détour par la météorologie.

    Cela débute en 1960 quand le météorologue Edward Lorenz s'intéresse aux équations de la convection atmosphérique. Ce sont des équations différentielles issues de la théorie de la dynamique des fluides. Elles sont extrêmement complexes et l'on ne sait pas les résoudre explicitement. Lorenz, après les avoir simplifiées le plus possible, cherche alors quel est le comportement prédit par ces équations et procède par approximations successives grâce à un ordinateur. La description de l'atmosphère est donnée à un instant par la température, la pression, la vitesse de l'air... en différents lieux, et la suite de ces nombres représente l'état du système. On rentre l'état initial et on laisse la machine calculer les états suivants qui sont uniques à chaque instant puisque le système est déterministe. On obtient ainsi de proche en proche l'évolution temporelle et donc la description de la convection. En 1961, Lorentz veut prolonger sur une durée plus longue une simulation faite sur une certaine période. Plutôt que de repartir sur le même état initial et pour gagner du temps, il introduit l'état obtenu à la moitié de sa simulation précédente. Mais, à sa grande surprise, l'ordinateur n'a pas répété les résultats de la deuxième moitié de la simulation précédente. Les résultats ont progressivement divergé pour bientôt ne plus rien avoir de semblable. Que s'est-il passé? En fait, l'ordinateur garde en mémoire des nombres à 6 chiffres dont seules 3 décimales sont imprimées. Lorenz a rentré dans la simulation les nombres imprimés, arrondis à 3 chiffres. De même que pour le problème des 3 corps, une petite erreur sur l'état initial a été amplifiée de telle sorte qu'elle a produit un résultat divergent pour l'évolution (c'est le phénomène de "sensibilité aux conditions initiales"que nous avons vu précédemment). Cette propriété est devenue célèbre sous le nom "d'effet papillon". 

    Il faut bien comprendre que le système évolue de façon déterministe et qu'à partir d'un état initial précis, l'évolution est bien unique mais, aussi minime soit l'imprécision sur cet état initial, il arrive un moment où l'erreur de prédiction est du même ordre de grandeur que la prévision elle-même, la rendant inutilisable. On retrouve cet aspect dans le phénomène de turbulence pour lequel David Ruelle et Floris Takens proposèrent en 1971  un nouvelle façon de comprendre la turbulence en faisant appel à un concept nouveau, celui d'attracteur étrange

               

               b) Les attracteurs étranges.

    Attracteur de Lorenz


    Le systeme de Lorenz s'écrit 

     Il comporte 3 variables dynamiques . On peut visualiser son évolution dans un espace à 3 dimensions, mais il n'est pas intégrable et on ne peut donc expliciter une solution donnant (x,y,z) en fonction du temps. Pour calculer les trajectoires, on procède de proche en proche, à partir d'un point initial en calculant avec un ordinateur le point suivant, suffisamment proche pour qu'on puisse identifier la trajectoire et sa tangente. Et on recommence à partir du point obtenu. Le résultat est un objet constitué de deux anses qui tournent autour de deux points fixes. A partir d'un point O1, la trajectoire commence par faire par exemple 2 tours autour de l'anse 1, puis 1 tour autour de l'anse 2 pour revenir faire 3 tours autour de l'anse 1 etc... Si on part d'un point O2 proche de O1, on s'attend à une trajectoire très voisine de la première. En réalité les deux trajectoires se séparent très vite. La deuxième peut faire aussi 2 tours autour de l'anse 1, mais 3 tours autour de l'anse 2, là où la première n'en faisait qu'un. A partir de là, les deux trajectoires seront  déconnectées. Pour un point Oon obtiendra une nouvelle trajectoire différente des deux premières. Cependant, si on  laisse tourner l'ordinateur assez longtemps, l'allure globale des trajectoires obtenues est identique quel que soit le point de départ: un objet avec deux anses. En effaçant le début des trajectoires, on obtient la même figure. Cela signifie que quelles que soient les conditions initiales du système, celui-ci finit toujours par évoluer le long d'une trajectoire unique. Ce type de trajectoire qui les attire toutes a été appelé un "attracteur". Dans les cas précédents, l'attracteur était un point fixe (pendule sans frottement) ou un cycle limite (oscillateur de Van Der Pol). L'attracteur de Lorenz est beaucoup plus étrange, d'où son nom d'attracteur étrange. Ce n'est pas une courbe ni une surface lisse, mais un objet fractal. Un exemple d'objet fractal est l'ensemble triadique de Cantor, qui est purement mathématique. Le premier exemple physique plus concret est a été donné par Hadamard sur les géodésiques (lignes de plus courte longueur qui joignent un point à un autre) de surfaces à courbure négative. Il montra en effet qu'aussi près qu'on se place sur une géodésique qui reste à distance finie, il existe une géodésique qui part à l'infini. Cela signifie que si on se donne la position initiale d'un point sur une telle surface, aussi petite soit l'incertitude sur cette position, on sera dans l'impossibilité de prédire si le point restera à distance finie ou s'il s'éloignera à indéfiniment. Les progrès dans l'étude des systèmes dynamiques réels ont montré que non seulement de tels systèmes existent, mais qu'ils constituent la généralité, les systèmes périodiques ou quasi périodiques étant l'exception. la distance entre deux trajectoires initialement aussi proches qu'on veut finiront toujours par se séparer; la distance entre elles croît exponentiellement en exp(λt) où λ est le coefficient de Lyapunov. "Le temps caractéristique" est le temps nécessaire pour que les écarts initiaux soient multipliés par 10. 


              d) Conséquence sur les limites de la prévision du temps.

    La preuve rigoureuse de l'existence du chaos dans les équations de Lorenz n'a été apportée qu'en 1995 et a nécessité l'intervention de l'ordinateur. Le preuve mathématique dans un modèle réel est bien hors de notre portée. Mais le phénomène de dépendance sensitive aux conditions initiales est un argument extrêmement fort pour penser que tout modèle plus réaliste y sera aussi soumis. Un question est alors de connaître le temps caractéristique du système dynamique constitué par l'atmosphère. On peut, en utilisant la théorie de la turbulence de Kolmogorov, évaluer la vitesse des perturbations dans l'atmosphère (suite aux nombreuses fluctuations de densité, de vitesse etc...). Ces fluctuations microscopiques échappent à nos moyens d'investigation et imposent une limite à la précision avec laquelle on peut se donner l'état initial: même avec des capteurs répartis et distants de 1 mm les uns des autres (ce qui est infaisable en pratique), on ne pourrait mesurer les fluctuations qui se situent plusieurs ordres de grandeur en dessous (le micron par ex). Or le temps nécessaire pour que des fluctuations microscopiques deviennent macroscopiques (le cm par ex), est de quelques mn. 

    Conclusion: comme il est impossible de connaître l'état initial avec une précision supérieure à l'échelle des fluctuations microscopiques, et que celles-ci s'amplifient pour atteindre l'ensemble du globe en moins de 15 jours, toute tentative de prédire le temps au-delà de cet horizon est vouée à l'échec. Nous ne saurons donc jamais le temps qu'il fera le mois suivant (a moins qu'on découvre ultérieurement un processus physique qui supprime de fait le chaos atmosphérique).

     

              e) Les systèmes chaotiques simples.

     

    On pourrait  penser que le comportement chaotique est lié aux systèmes complexes, il n'en n'est rien. Un espace des phases à 3 dimensions est suffisant pour qu'un comportement chaotique survienne. Un exemple purement mathématique de comportement chaotique  est l'Application logistique simple x_{n+1} = \mu x_n(1 - x_n)~ où μ est une constante fixée entre 1 et 4 et où X0 est  pris entre 0 et 1. Pour  μ compris entre 1 et 3, l'itération mène à une valeur unique quelque soit le point de départ X0. Par exemple, pour  μ = 1,2,  on aboutit après plusieurs itérations à une valeur qui ne change plus, de l'ordre de l'ordre de 0,167 (pour μ =2, on aboutit à une valeur fixe de 0,5). Ces valeurs sont de attracteurs points fixes. Quand on dépasse 3, la valeur limite oscille entre 2 nombres distincts (0,558 et 0,764 pour 3,1). C'est un cycle de période 2. Pour μ =3,5 un cycle de période 4 apparaît (0,5 et 0,875 - 0,383 et 0,827). Pour μ = 3,55 le cycle passe à 8. Puis le doublement de période s'accélère et pour μ = 3,58 la période a doublé un nombre infini de fois. On obtient alors un mouvement chaotique où les valeurs itérés semblent ne plus suivre aucune règle. Pour 3,581 par exemple, la réitération donne une suite de nombres qui paraissent aléatoires (c'est d'ailleurs par des procédés de ce type que les ordinateurs fournissent des nombres aléatoires). Le comportement ultérieur est remarquable car on retrouve des intervalles où l'ordre réapparaît. L'apparition du chaos mathématique n'est donc nullement lié à la complexité.

    Un autre exemple de chaos lié à un système simple est fourni par les un billard convexe où des collisions ont lieu avec des obstacles ronds (les chocs sont supposés parfaitement élastiques et les frottements négligeables). Si les boules heurtent une bande, elles rebondiront et les trajectoires, qui font en angle a entre elles, resteront voisines. Mais si elles heurtent un obstacle rond, l'angle de divergence des trajectoires est multiplié par 2 après le rebond. Deux trajectoires voisines divergeront au bout de quelques rebonds et une boule qui heurtera un obstacle pour une trajectoire, l'évitera pour l'autre trajectoire.


    3) conclusion.

    Pendant des siècles, on a cru en la toute puissance de la méthode analytique. Les mathématiques étaient supposées permettre de calculer le comportement et l'évolution de tous les systèmes physiques si on dispose de des équations correspondantes et de moyens de calcul suffisants. C'est ce qui a conduit Eugène Wigner à parler de "l'efficacité déraisonnable des mathématiques". Cette belle confiance se révèle fausse puisque non seulement il existe des systèmes pour lesquels toute prévision est impossible mais, de plus, ces systèmes représentent la grande majorité des systèmes physiques. Les mathématiques ne nous permettent pas de plus de prédire l'évolution à l'infini, quelque soit la précision avec laquelle on se donne les conditions initiales. Il faudrait les connaître avec une précision infinie, ce qui est impossible. C'es ce qui permet à Ivar Ekeland de dire: "Plus jamais on ne dira: telle équation représente tel phénomène. Il faudra ajouter: le système est chaotique, son temps caractéristique est tant...si vous voulez calculer telle quantité, utilisez telle méthode plutôt que telle autre. En d'autres termes, on ne pourra plus énoncer une théorie scientifique sans dire ce qui est calculable dans cette théorie et ce qui ne l'est pas, et sans indiquer dans chaque cas les moyens de calcul appropriés...".

     

    Déjà au début du siècle, la démonstration de Hadamard sur les géodésiques des surfaces à courbure négative avait conduit Duhem à à parler "d'une déduction mathématique à tout jamais inutile aux physiciens". Les travaux ultérieurs on montré que cette situation n'est pas exceptionnelle, mais représente en fait la généralité. Les travaux les plus récents en mécanique céleste ou en météorologie nous montrent même que les limites de notre pouvoir de prédiction touchent des aspects essentiels du monde puisque nous ne pourrons jamais prédire le temps au-delà d'un certain horizon assez proche  ni savoir si la terre changera un jour d'orbite. 

    Bien sûr on peut relativiser l'importance de ces résultats en remarquant que l'avenir du système solaire reste prédictible pour quelques dizaines de millions d'années ou que nous pouvons connaître le temps qu'il fera sur une semaine. Notre environnement immédiat n'est pas un univers de chaos imprévisible, la science n'aurait pas pu obtenir les résultats extraordinaires qu'elle a atteints et l'étude même du chaos n'aurait pu être entreprise. La turbulence n'empêche pas les avions de voler ni les turbines de tourner, au contraire. Il s'ensuit que quelque soit la pertinence pratique de ces conclusions, leur pertinence épistémologique et philosophique est claire: dans les cas présentés, le mouvement est imprévisible au bout de quelques dizaines de secondes et des objets très rudimentaires échappent et échapperont toujours à nos calculs! 

    Face à notre impuissance il faut souligner que le paradigme de la possible mathématisation de la nature doit être revu. Quels que soient les moyens théoriques ou techniques dont on disposera, quel que soit le temps qu'on acceptera de passer sur une prédiction, il existera toujours un horizon temporel infranchissable dans les prédictions. Cet horizon est variable selon la nature du système et les limites de principe dans la précision qu'on peut obtenir sur les conditions initiales mais il est fini dans tous les cas. 

    L'univers ne peut plus être considéré comme une grande machine dont il est possible de prévoir le comportement au moyen de formules mathématiques, même complexes. Au siècle dernier (fin 19e et début du 20e siècle), une telle affirmation aurait paru scandaleuse, et aurait interprétée comme un abandon du déterminisme et de fait ,comme la fin de la science et le retour aux superstitions d'autrefois. Les progrès de la recherche ont montré qu'un échappatoire est possible et qu'un système peut être déterministe et non prévisible. L'équivalence entre déterminisme et prédictibilité est morte. On peut croire que le monde dans lequel nous vivons est déterministe (ce que nuance la physique quantique, voir le prochain article), il n'en n'est pas moins non-prédictible. C'est ce que signifie l'expression "chaos déterministe".


    Remarque: on peut envisager d'augmenter la précision avec laquelle on se donne les conditions initiales et se donner une échelle de temps souhaitée pour l'horizon temporel. On peut alors penser que tout système restera prévisible en principe. Dans le cas de l'atmosphère il reste l'impossibilité pratique de de disposer des moyens de mesure permettant de connaître l'état de chaque molécule d'air. Mais l'objection plus fondamentale est que la mécanique classique n'est plus le cadre adapté et il faut se placer dans le formalisme de la mécanique quantique. Or en raison du principe d'incertitude de Heisenberg, on se trouve face à une limitation de principe sur la mesure des conditions initiales. La conclusion sur la limitation de la prévision est encore valable, mais elle devra être réexaminée dans ce nouveau cadre (voir les articles suivants).


    Pin It

    votre commentaire
  •  

    Les limites de la connaissance 4) déterminisme et chaos.

    Première partie) 

    fractales



    Préambule

     

    La science nous permettra-t-elle un jour de tout savoir? Ne rêve-t-elle pas d'une formule qui explique tout? N'y aurait-il rien qui entrave sa marche triomphale? Le monde deviendra-t-il transparent à l'intelligence humaine? Tout mystère pourra-il être à jamais dissipé?


    Hervé Zwirn pense qu'il n'en n'est rien.La science, en même temps qu'elle progresse à pas de géant marque elle même ses limites. C'est ce que montre la découverte des propositions indécidables qui ont suivi le théorème de Gôdel. Ou celle des propriétés surprenantes du chaos déterministe. Ou encore les paradoxes de la théorie quantique qui ont opposé Einstein et Bohr  en mettant en cause toute notre manière de penser.

    L'analyse de ces limites que la science découvre à sa propre connaissance conduit à poser une question plus profonde: qu'est ce que le réel?


    En exergue:

    "Cette époque, où l'on sera obligé de renoncer aux méthodes anciennes, est sans doute encore très éloignée; Mais le théoricien est obligé de la devancer, puisque son oeuvre doit précéder  et souvent d'un grand nombre d'années, celle du calculateur numérique."        Poincaré [1982]

    Les limites de la connaissance 4) déterminisme et chaos. Première partie.


    1) Introduction.

    RappelOn a vu dans l'article 3) que la possibilité de faire l'édifice des connaissances sur des bases sûres et isolées du reste de la construction est un leurre. La connaissance est un vaste réseau d'énoncés  étroitement imbriqués qui ne sont testables que de manière collective. On a montré que qu'il est impossible de prouver qu'une théorie décrive toute la réalité empirique de son champ d'application (qu'elle soit ce qu'on donne pour le vrai), mais on peut en trouver une qui ne soit jamais contredite par l'expérience. Selon la thèse de la sous-détermination des théories, on peut en trouver une autre incompatible avec elle et partageant les mêmes qualités. Or il est impossible que soient simultanément vraies deux théories contradictoires. Il est donc nécessaire d'abandonner aussi la notion intuitive de vérité. Mais alors, le concept de réalité semble aussi s'estomper (voir à ce sujet les différentes conceptions philosophiques dans les article à venir sur la physique quantique). En attendant, il faut considérer que les objets physique et les forces (censés constituer la réalité au sens habituel du terme) sont des entités intermédiaires postulées pour la commodité et la brièveté du discours. Comme le dit Quine, leur statut épistémologique est du même ordre que celui des dieux grecs ou des centaures. Il n'en diffère que par leur degré d'efficacité."

    Du temps d'Aristote (384-322 av. J.C), on pensait que le monde terrestre, sublunaire, n'était pas régi par des lois précises, contrairement au monde céleste, réputé parfait et immuable. Les irrégularités de notre monde terrestre, imprévisibles et incompréhensibles, étaient considérées comme la manifestation des caprices des divinités qui le gouvernaient, il n'y avait pas d'ordre.

    Progressivement les hommes apprirent que les régularités existent et qu'elles obéissent à des lois, les mêmes que celles qui régissent les cieux, lois qui nous sont accessibles. 

    La révolution de Galilée et Newton découvrirent ainsi la loi unique et universelle de la gravitation. Les lois s'expriment sous forme d'équations différentielles. Elles sont telles que si on connait à un instant  "l'état d'un système" (par exemple la position et la vitesse), celles-ci sont alors déterminées de manière unique pour tout instant ultérieur. c'est ce qui a conduit Laplace à déclarer: "nous devons envisager l'état présent de l'univers comme l'effet de son état antérieur et comme la cause de celui qui va suivre. Une intelligence qui pour un instant donné connaîtrait toutes les forces dont la nature est animée et la situation respective des êtres qui la composent, si d'ailleurs elle était assez vaste pour soumettre ces données à l'analyse, embrasserait dans la même formule les mouvements des plus grands corps de l'univers et ceux du plus léger des atomes: rien ne serait incertain pour elle, et l'avenir comme le passé seraient présent à ses yeux." C'est le paradigme du déterminisme classique. Même si la difficulté technique des calculs empêche d'arriver à un résultat explicite, nous sommes capables en principe, selon cette conception, de prédire l'état futur de tout système physique pourvu qu'on connaisse son état à un instant donné. On est passé de la vision chaotique du monde, selon laquelle ce qui se produit n'est dû qu'aux caprices imprévisibles de forces qui nous échappent, à une vision d'ordre parfait où tout est régi par des lois qui nous sont accessibles. Cette conception comporte deux caractéristiques qui furent attribuées aux systèmes physiques et qui reçurent une confiance accrue. La première est la conviction que des lois simples engendrent des comportements simples et donc que les comportements complexes sont dus à des lois ou à des systèmes complexes. La deuxième est que de petites modifications de l'état initial d'un système se traduisent par des modifications également petites de son évolution. Afin de justifier l'apparente liberté qui est la notre ou le fait qu'on ne sache pas prédire réellement ce qui va se passer, il il est facile de faire appel à l'impossibilité matérielle de faire des calculs (jugés trop complexes) ou de connaître l'état de l'univers (jugé trop vaste pour nos moyens humains). Nos savons maintenant la fausseté de cette vision du monde, révolutionnée par d'une part la vision déterministe du chaos, et d'autre part par la vision quantique (probabiliste) de l'univers.


    2) Représentation et compréhension du monde.

              

              a) Les systèmes et les états.

    Un système est un morceau de réalité, selon l'expression de David Ruelle, qu'on isole par la pensée. La description physique doit préciser les entités corps matériels, champs, etc...) et ses propriétés physiques qu'il faudra décrire et prédire, avec différents niveaux de précision (par exemple une boule en métal aimantée se déplaçant sur un billard, en considérant que la boule est assez petite pour être un point matériel et le champ magnétique trop faible pour influencer le mouvement). La représentation adoptée sera celle d'un point matériel M de masse m glissant sur une surface plane dont les seules propriétés considérées sont la position et la vitesse à chaque instant. Si on veut étudier ce que les joueurs de billard appellent les "effets", il faudra prendre le rayon R et la vitesse de rotation de la boule ainsi que son frottement sur le tapis et éventuellement inclure le champ magnétique dans le système s'il est notable.

     Ainsi, le même objet physique, dans la même situation, peut conduire à adopter des représentations constituées de systèmes différents avec des grandeurs physique qui peuvent être différentes (un point matériel glissant sur une surface plane, une boule de rayon R, une boule aimantée de rayon R soumise à des forces électromagnétiques...). Dans chaque cas, ce que l'on cherche à décrire, c'est l'évolution des propriété physiques retenues comme faisant partie du système (la position et la vitesse de la boule...). La donnée des valeurs de chacune des grandeurs physiques appartenant à un système constitue "l'état " du système à cet instant. Cette notion d'état est fondamentale. En physique classique, il semble aller de soi qu'à tout instant un système est dans un état bien défini, les grandeurs physiques qui lui sont attachées possèdent des valeurs déterminées précisément. Un boule possède une position et une vitesse parfaitement définies, même si nous ne les connaissons pas. Il y  a une correspondance parfaite entre la boule réelle et sa description par la donnée de son état. On peut ainsi associer à la boule une trajectoire qui est l'ensemble de ses positions successives au cours du temps. 

    Les physiciens ont l'habitude de travailler dans ce qu'on appelle "l'espace des phases", qui est un espace imaginaire, ici à 4 dimensions (les 2 coordonnées de dimension des positions de la boule et la quantité de mouvement = produit masse X vitesse). A chaque instant, la boule a une certaine position (Qx, Qy) et une quantité de mouvement (Px, Py), son état est don déterminé par ces 4 coordonnées, 2 de position et 2 de vitesse. On dit que le système a 2 degrés de liberté et on lui associe un point de coordonnées (Qx, Qy, Px, Py) dans l'espace des phases à 4 dimensions. D'une manière générale, l'état d'un système est déterminé par N coordonnées de position et N coordonnées de vitesse, soit N degrés de liberté.

    Afin d'effectuer des prédictions sur les grandeurs physiques, on utilise les lois qui en régissent l'évolution et la considération du système est indissociable de celle de celle de ces lois. Se donner la description d'un système correspond à modéliser la réalité. Un "modèle" est l'ensemble constitué par la spécification d'un système physique et la donnée des lois auxquelles il obéit. Il est utilisé pour décrire une portion du monde. 


              b) Modèle et explication.

    La construction d'un modèle est une tâche à la fois progressive et continuelle. Thomas Kuhn a suggéré qu'il peut être incommensurable aux modèles antérieurs lorsqu'il se produit  "une révolution" entraînant un changement de paradigme. En fait, dans tout modèle, un écart entre prévision et observation impose soit une nouvelle description du système, soit une modification des lois. Le but de la physique classique (celle de la fin du 19e siècle) est double: Il consiste d'une part à prédire le comportement futur du système qu'on étudie (prédire ses états futurs à partir de son instant à l'état initial)  et d'autre part, à comprendre pourquoi le système se comporte de cette manière, c'est à dire expliquerLe "pourquoi" était encore un des buts de la physique alors que maintenant on a coutume de dire qu'elle n'est concernée que par le "comment". Cette conception est conforme à la conception Popérienne: on fait une hypothèse de modèle, puis on le teste en le confrontant avec l'expérience. Lorsque le modèle échoue, on doit le modifier. Par contre, si un grand nombre de tests réussissent, il est de mieux en mieux corroboré et lorsque la confiance est suffisante, il peut être considéré comme explicatif. 


              c) Illustration: le mouvement des planètes.

    Une des premières explications en vigueur chez les grecs était: les planètes et les étoiles sont fixées sut la voûte céleste qui tourne autour de la terre en 24 heures, chaque étoile y accomplit un cercle parfait autour de la terre. Le système était constitué par le soleil, les planètes, la terre et la voûte céleste; la grandeur physique étudiée était la position de chacune des planètes. Cette vision était en accord avec le paradigme et les idées théologiques du moment attribuant aux corps célestes la nécessité de d'un mouvement parfait, donc circulaire. La loi générale attribuant à chaque corps céleste un mouvement circulaire permet de prédire, avec la précision des mesures de l'époque, la position d'un astre à partir de sa position à un moment donné. La représentation associée, est, elle, intuitive: si les planètes sont fixées sur une sphère rigide, leur mouvement est alors parfaitement compréhensible. 

    L'astronome grec Hipparque, après une analyse précise des données dont il disposait, fut le premier, semble-t-il, à constater au 2è siècle avant notre ère, que le mouvement des planètes n'a nullement la régularité circulaire parfaite qu'on lui supposait: elle inversent leur course a certains moments (Des civilisations antiques, notamment celle de l'Egypte ce celle du continent disparu dans "le grand Cataclysme" savaient tout cela selon Albert Slosman dans "la Grande hypothèse). Il proposa un correction de modèle tout en conservant toute son importance au mouvement circulaire. Le mouvement des astres y est décrit comme résultant de la combinaison de deux mouvements circulaires: un grand cercle centré sur la Terre, le déférent, et un petit cercle se déplaçant sur le déférent, l'épicycle. Ce modèle abouti à de nouvelles prévisions, fut perfectionné par Ptolémée, mais restait dans la continuité du précédent. 

    C'est Copernic qui, au 16è siècle, proposa une nouvelle loi, plus efficace pour représenter le mouvement des planètes, mais surtout elle représenta une véritable révolution conceptuelle et un "changement de paradigme" au sens de Kuhn. Le mouvement apparent des planètes résulte de la combinaisons des deux mouvements circulaires autour du soleil, celui des planètes et celui de la terre. Cependant Copernic restait encore prisonnier du mouvement circulaire uniforme. Puis, travaillant sur les données accumulées par Tycho BrahéKépler énonça ses 3 lois (1604-1618), en révolutionnant le paradigme de la perfection du mouvement circulaire par l'introduction du mouvement elliptique. Mais pourquoi la loi des aires et in temps mis pour parcourir la trajectoire égal à la puissance 3/2 du grand axe? Ces règles sont encore empiriques sans qu'on en sache la raison profonde. Avec Kepler l'astronomie a rempli son rôle d'accoucheuse de la science en révélant des lois empiriques dont la forme est mathématique. Le modèle associé peut être dit "instrumentaliste" (La science n'a pour but que de prédire le résultat des observations et n'est donc qu'un ensemble de recettes qu'il est dénué de sens de vouloir interpréter comme une description de la réalité en soi. La prédiction ne sert alors plus de support à l'explication) .

    C'est Newton qui, en 1867, répondra en introduisant un nouveau changement radical à la fois dans les lois régissant le mouvement des planètes et dans l'explication de ce mouvement. Ce faisant, il unifiera la physique céleste de Képler et la physique terrestre de Galilée. Sa théorie repose sur la célèbre loi de la gravitation. Elle permet à la fois de prédire précisément les trajectoires des planètes mais donne une explication aux lois empiriques de Kepler en les englobant dans une vision bien plus générale. Elle unifie les raisons qui font qu'un corps lâché d'une certaine hauteur tombe et que la terre tourne autour du soleil. L'idéal cherché est atteint par le donnée d'une loi qui permet de prédire le mouvement des astres et de l'expliquer par l'existence d'une force à distance, concept absent du modèle de Kepler. Newton ne croyait pas vraiment à cette force, mais la précision des prédictions est telle que qu'elle en renforcé la croyance pendant deux siècles et demie. Ce modèle n'est pas un simple perfectionnement continu du modèle grec, mais un changement révolutionnaire de paradigme qui a introduit la science moderne et une nouvelle vision du monde.

    Mais l'histoire ne s'arrête pas là. Uranus fut découverte par Herschel en 1871  puis Le Verrier et Adams proposèrent l'hypothèse d'une nouvelle planète qui était le cause des perturbations du mouvement constaté pour Uranus. Sa position fut calculée et Neptune fut ainsi découverte conformément aux prédictions. La transformation du modèle s'était effectuée non par un changement de loi, mais par un élargissement du système. Avec l'augmentation de la précision des mesure, la même histoire s'est répétée et Percival Lowell proposa l'existence d'un nouvelle planète observée par Clyde Tombaugh en 1930.

    Cependant, la constatation d'une anomalie dans la trajectoire de Mercure, ce qu'on appelle "la précession de son périphélie" a amené Le Verrier à postuler une nouvelle planète, Vulcain. Mais celle-ci ne fut jamais observée (des difficultés apparemment semblables ne se règlent pas toujours de la même façon),. Il revint à Einstein, en 1915, d'en donner la raison et de fournir avec sa théorie de la relativité générale, les lois et les explications qui sont en vigueur de nos jours. C'est un nouveau paradigme qui est né et qui a radicalement changé encore une fois notre vision du monde. Les concepts d'espace et de temps newtoniens ont été remplacés par un concept unique, celui d'espace-temps. La force de gravitation postulée par Newton est devenue  un effet de la courbure de l'espace-temps provoqué par la présence de masses. On peut dire que ce nouveau changement de paradigme est particulièrement révolutionnaire.


              d) évolution du concept de compréhension.

    A chaque époque, les explications, liées aux lois acceptées, ont été différentes et on mesure le fossé qui existe entre une représentation du monde qui postulait que que les astres sont fixés sur une voûte céleste rigide tournant autour de la terre et celle qui découle de la relativité générale, avec un espace-temps courbe à 4 dimensions. 

    La première représentation des Grecs est intuitive et constitue une explication en ce sens qu'elle identifie le mouvement des planètes à quelque chose de familier dont on a l'expérience (une boule). Le mouvement de la boule est certes inexpliqué, mais il reste en dehors du phénomène qu'on cherche à expliquer: le mouvement des planètes et d'elles seules. L'introduction des épicycles ne fait que compliquer l'image intuitive sans en changer la nature. Avec les lois de Kepler, on abandonne le domaine du familier représentable par des images. Les lois deviennent de nature purement mathématique (bien que la notion d'ellipse, elle, puisse être traduite en images).  Il n'est plus possible de prétendre comprendre, tout au plus peut-on constater que les planètes respectent ces lois purement empiriques, sans pour autant qu'on sache pourquoi. La théorie de Newton semble apporter une nouvelle compréhension en ce qu'elle donne une loi unique de laquelle découlent les lois de Kepler. Mais est-il possible de dire qu'on comprend le mouvement des planètes? Galilée rejetait avec horreur le concept d'attraction à distance ([...] je ne peux croire à des causes occultes et autres futilités de ce genre). Pour Descartes, seules les actions de contact sont de nature intelligible. Newton lui-même a avoué avoir les plus grandes difficultés à admettre cette force à distance, ce qui le conduisit à sa formule célèbre "je ne feins pas d'hypothèses", signifiant par là qu'il ne cherche pas d'explication à la force de gravitation. De nos jours, nous nous sommes habitués à à cette idée qui ne nous semble plus aussi étrange. 

    Le concept de compréhension donc est passé du stade où il signifiait "ramené au familier" au stade où il signifie "prédit par une loi simple". Avec l'intrusion de plus en plus grande des mathématiques et du formel, comprendre l'évolution de l'état d'un système signifie maintenant qu'on puisse le modéliser par un formalisme mathématique cohérent. On atteint un sommet avec la relativité générale. Peut-on dire qu'on comprend le mouvement des corps grâce à cette théorie? On donne souvent l'analogie d'une surface plane en caoutchouc qui se déformerait sous l'influence de boules massives. L'espace-temps de la relativité générale courbé par la présence des masses serait l'analogue de ce plan en caoutchouc  déformé par les poids qu'on y a déposés. On peut ainsi, sans connaître le formalisme mathématique, avoir l'impression de comprendre le mouvement en l'ayant ramené à quelque chose de familier. Mais c'est une illusion trompeuse, car ramener à un concept familier dont on a l'expérience ce qu'est un espace-temps courbe passe totalement sous silence un aspect irréductible de l'espace-temps qui est le mélange intime entre l'espace et le temps et que nulle analogie ne peut rendre de manière satisfaisante. Encore moins est-il possible de comprendre en ce sens ce qu'est la courbure du temps. Si compréhension il y a, c'est la simple capacité de prédire de manière cohérente et et unique les mouvements de l'ensemble des corps dans toutes les conditions possibles. Elle est donc réduite au maniement du formalisme et se confond avec la capacité d'utilisation de ce formalisme à des fins de prédictionToute compréhension fondée sur l'utilisation d'images intuitives ou de représentations mentales familières doit être abandonnée

    Doit-on adopter nécessairement une position instrumentaliste et abandonner le réalisme épistémique? Non car il est possible de penser que les concepts mathématiques ont leurs correspondants réels même s'il est impossible de s'en forger une image familière. C'est la position  du "réalisme mathématique" qui confère une existence réelle aux objets mathématiques eux-mêmes. Mais la thèse de l'intelligibilité  de la nature doit être affaiblie car la compréhension qui lui est associée n'est plus immédiate et familière que celle du réalisme métaphysique initial. Cela signe la mort du programme cartésien qui souhaitait se laisser guider par les images familières. 


    3) Le déterminisme mis à mal.

              a) Le déterminisme et les équations différentielles.

    Les équations qui décrivent les mouvements des corps soumis exclusivement à la gravitation newtonnienne sont des équations différentielles (équations qui relient une fonction à ses dérivées). Exemple: df(x)/dx - f(x) = 0 dont les solutions sont f(x) = Ce(puissance x, ou Cexp(x)). La loi de la gravitation stipule que qu'entre deux corps de masses respectives m et M situées à une distance d, s'exerce une force attractive d'intensité proportionnelle au produit des masses et inversement proportionnelle au carré de la distance: F = GmM/d(puissance 2) où G est une constante, la constante de gravitation. Newton a aussi "prouvé" que qu'un corps de masse m soumis à une force F subit une accélération y proportionnelle à la masse: y = F/m. 

    Ces deux lois suffisent pour décrire le système d'équations décrivant le mouvement d'un nombre arbitraire de corps soumis à leur seule interaction gravitationnelle. Par exemple, pour un corps au repos m attiré par un corps M l'équation qui décrit le mouvement est: d(carré)/dt(carré) = GM/x(carré) où x est la distance entre les deux corps sur l'axe qui les relie. La caractéristique de ce type d'équation est que pour chaque valeur de x et de dt/dx (la vitesse) à un instant initial to, l'équation fixe de manière unique  leurs valeurs à tout autre instant. Si le système solaire est décrit par un système d'équations différentielles, son passé et son futur sont entièrement inscrits dans son présent. Comme le dit Ekeland, on peut avoir l'impression que l'éternité est enfermée dans l'instant présent. C'est ce qui a conduit Laplace à écrire sa phrase célèbre. 

    L'évolution d'un système est dite "déterministe" si son état à un instant donné est détermine précisément et de manière unique son état à tout instant ultérieur. Les mouvements d'un ensemble de corps soumis à la loi de la gravitation sont décrits par un système d'équations différentielles et sont donc parfaitement déterministes. 


              b) Les difficultés de la mécanique céleste et la théorie des perturbations.

    Mais la résolution des équations différentielles (leur intégration) est souvent ardue, quand elle est possible, ce qui est loin d'être toujours le cas. Par exemple, le problème consistant à prédire l'évolution du système constitué par la Terre, Saturne et le soleil, est redoutablement complexe. Devant la difficulté (aux 18e et 19e siècles, les mathématiciens étaient incapables de prédire si Saturne ne s'échapperait pas dans l'espace...) qu'ils rencontraient à résoudre explicitement (décrire les fonctions solutions) les équations décrivant le système, ils furent amenés à développer de nouvelles méthodes de résolution, dites "perturbatives", en ce qu'elles procèdent par approximations successives par rapport à  des petites déviations d'une trajectoire primaire correspondant à un système simplifié qu'on sait calculer exactement. On commence par calculer dans le système à 2 corps (Terre-Soleil), l'orbite elliptique Képlérienne de la Terre. Si on désire tenir compte de l'attraction de Saturne, le système ne se résout plus. L'idée de base de la théorie des perturbations consiste à calculer le mouvement du système par une perturbation, supposée petite apportée au mouvement idéal du système Terre-Soleil. 

    [Dans les équations décrivant un système physique la théorie des perturbations s'utilise lorsqu'une action (perturbation) agissant sur le système peut être considérée comme petite. La méthode consiste à résoudre exactement le problème en l'absence de perturbation et à calculer la correction introduite par la perturbation. Le résultat obtenu peut à son tour servir d'approximation zéro pour le calcul d'une nouvelle correction.. Il en résulte l'expression de la solution cherchée sous la forme d'une série en puissance croissante de la perturbation. Lorsque la perturbation est réellement petite on peut se limiter aux premiers termes de la série. Historiquement la théorie des perturbations a été pour la première fois utilisée en mécanique céleste pour la résolution approchée du problème à trois corps. Ici l'approximation zéro est le problème de l'orbite képlérienne du problème à deux corps. Le troisième corps introduit une perturbation que l'on considère comme petite.. La théorie des perturbations est largement utilisée en mécanique quantique pour la résolution de l'équation de Schrödinger chaque fois que l'interaction peut être scindée en deux termes, un terme principal déterminant essentiellement l'état du système et un terme beaucoup plus petit provoquant une légère modification de cet état.. ]. Cette méthode, utilisée par Le Verrier pour découvrir Uranus a présenté des difficultés: elle a demandé un an à LeVerrier et le double à Adams, et les positions prédites étaient assez éloignées de la planète et les résultats suivants (Hill en 1897) étaient encore différents. Il revint à Poincaré d'en expliquer la raison.


             c) Poincaré et les systèmes intégrables.

       Le système d'équations qui décrit le mouvement est intégrable lorsque la trajectoire est donnée sous forme de fonctions explicite reliant les coordonnées au temps. C'est le cas avec les lois de Kepler qui permettent de donner pour chaque planète, l'équation de sa trajectoire elliptique en fonction du temps. Mais dans le cas de trois corps et plus, il n'a pas été trouvé de solution exacte et les méthodes perturbatives sont extrêmement lourdes et les calculs à mener sont très longs. La situation semble très frustrante, l'évolution du système est parfaitement déterministe, mais faute de disposer explicitement de la fonction, solution des équations, on est obligé de faire des calculs longs et complexes qui ne donnent que des valeurs approchées. Cette question fut posée par le mathématicien Karl Weierstrass comme sujet de concours que lança le roi Oscar II de Suède et de NorvègeHenri Poincaré, en 1899, montra que le problème n'a pas de solution et qu'une telle recherche est vaine dans ses "méthodes nouvelles de la mécanique céleste". Aucune fonction obtenue par combinaison ou intégration de fonctions calculables (fractions rationnelles, fonctions trigonométriques, exponentielles...) ne peut être solution du problème. De plus, toute tentative pour pour exprimer des solutions sous forme de fonction exprimées par des séries échouera, car celles-ci seront divergentes. Or la méthode des perturbations est basée sur des développements en série de puissances de la perturbation, donc elle ne peur donner de solution exacte. Elle vont tendre vers l'infini ou osciller indéfiniment si on calcule leur somme avec un nombre de termes croissant. Mais Poincaré montre qu'elles sont asymptotiques, ce qui veut dire que les premiers termes donnent une approximation de la vraie valeur même si les termes suivants s'en écartent. On ne peut avoir la valeur qu'avec une incertitude, car ajouter des termes produit un effet inverse. Le problème est de savoir à quel terme s'arrêter pour obtenir la meilleure approximation. De plus, cela interdit de  les utiliser pour tirer des conclusions sur le long terme (et en particulier sur la stabilité du système solaire). 

    Selon Poincaré, les équations de Newton enferment une part de vérité qui nous échappera toujours, puisque certaines de leurs conséquences nous resteront inaccessibles. L'incapacité d'expliciter les solutions n'est pas due à notre maladresse temporaire, mais est une conséquence inévitable de la forme des équations.


              d) Les échappatoires aux résultats de Poincaré.

    Les méthodes de résolution étaient fondées à cette époque sur une méthode due à Liouville qui avait montré comment l'existence de quantités conservées (grandeurs physiques comme l'énergie attachées au système qui conservent la même valeur lors de son évolution. Voir le théorème  en mécanique hamiltonienne), en nombre suffisant, en fait égal au nombre de degrés de liberté, permet d'intégrer les équations. Poincaré avait montré que dans le problème des trois corps il n'y avait pas assez de valeurs conservées. Mais, de fait, un mathématicien suédois, Karl Fritiof sundmann trouva ultérieurement des séries convergentes qui donnaient les coordonnées des corps en fonction de la racine cubique du temps. Malheureusement, elles sont peu utilisables en pratique, car elles convergent beaucoup trop lentement. Il serait nécessaire de calculer un nombre astronomique de termes pour effectuer la moindre prévision utile. La méthode des perturbations, à travers des séries divergentes, produit des résultats approchés beaucoup rapidement.  

    Ensuite, Kolmogorov, Arnold et Moser (c'est le célèbre théorème de KAM), montrèrent que, contrairement à ce que pensait Poincaré, ces séries peuvent être convergentes pour certaines conditions initiales proches de celles engendrant des comportements périodiques. Mais ces résultats n'ont rien changé à la conclusion essentielle avait aboutit Poincaré: dans le cas général, il est impossible de prédire avec une erreur aussi faible qu'on le souhaite le mouvement à long terme à long terme de plus de deux corps soumis à leur attraction gravitationnelle. Cette impossibilité est due à une propriété essentielle des équations du mouvement que Poincaré mit en évidence; la sensibilité aux conditions initiales: "une cause très petite, qui nous échappe, détermine un effet considérable que nous ne pouvons pas voir et nous dirons que cet effet est dû au hasard". C'est en fait une propriété générale de la majorité des systèmes dynamiques non linéaires. 


              e) déterminisme et non-prédictibilité.     

    ensemble de Mandelbrot - fractale

    Le déterminisme est habituellement toujours associé à la prédictibilité. Il est légitime de s'attendre à ce qu'on puisse prédire les états futurs en appliquant à l'état initial la fonction déterministe qui transforme cet état en l'état à un instant t ultérieur quelconque. On est parfois obligé de procéder par approximations en raison de la trop grande complexité des résultats, mais ces approximations sont suffisamment précises pour que l'incertitude sur les prédictions soit maîtrisée et limitée. Négliger une quantité inférieurs à une certaine valeur est ce que Benoit Mandelbrot appelle un hasard bénin: une incertitude ou une approximation initiale bornée par une valeur epsilon se traduit par une incertitude du même ordre de grandeur sur le résultat et de petites modifications entraînent de petits effets. On peut prouver que les systèmes régis par des équations différentielles linéaires adoptent toujours ce comportement agréable. Jusqu'à une date récente, le sentiment dominant était que la majeure partie des systèmes dynamiques se comportait de cette manière. En fait, on avait toujours privilégié l'étude des systèmes intégrables. Mais avec la mécanique céleste, les travaux de Poincaré on montré que cet espoir était vain. On découvrit petit à petit que cette difficulté, loin d'être exceptionnelle, était le règle pour de très nombreux systèmes dynamiques non linéaires. Un petite erreur sur l'état initial s'amplifie de manière exponentielle, et l'évolution, bien que parfaitement déterministe est imprévisible! Poincaré était conscient de ces limites qui signifient l'échec de la méthode analytique et l'impuissance des mathématiques à calculer le comportement d'un système physique aussi simple que celui de trois corps en interaction gravitationnelle. 

    Devant son impuissance à calculer exactement les trajectoires, il s'intéressa à leur représentation dans l'espace des phases. Ceci nous amène au prochain article consacré à la théorie du chaos déterministe (Les limites de la connaissance 5) déterminisme et chaos. 2èpartie: le chaos déterministe).


    Pin It

    votre commentaire
  •  

    Les limites de la connaissance 

    2) l'effondrement des fondations, L'empirisme logique

     

     

     

    Préambule.

     

    La science nous permettra-t-elle un jour de tout savoir? Ne rêve-t-elle pas d'une formule qui explique tout? N'y aurait-il rien qui entrave sa marche triomphale? Le monde deviendra-t-il transparent à l'intelligence humaine? Tout mystère pourra-il être à jamais dissipé?


    Hervé Zwirn pense qu'il n'en n'est rien.La science, en même temps qu'elle progresse à pas de géant marque elle même ses limites. C'est ce que montre la découverte des propositions indécidables qui ont suivi le théorème de Gôdel. Ou celle des propriétés surprenantes du chaos déterministe. Ou encore les paradoxes de la théorie quantique qui ont opposé Einstein et Bohr  en mettant en cause toute notre manière de penser.

    L'analyse de ces limites que la science découvre à sa propre connaissance conduit à poser une question plus profonde: qu'est ce que le réel?

     

     

    La certitude en mathématiques. 

     

    Les conclusions de l'article sur l'empirisme logique aboutissent à une vision du monde qui refuse au savoir toute certitude assurée et qui remet en cause le statut même de la réalité extérieure; la science n'est que le discours le plus simple et le plus commode en adéquation avec nos expériences; Les objets physiques ne sont que des entités intermédiaires que nous postulons pour que nos lois soient les plus simples possibles, mais rien ne nous garantit que leur existence est plus réelle que celle des dieux de l'antiquité. 

     

     

    Le programme finitiste de Hilbert.

    L'idée de Hilbert est d'enfermer la totalité des mathématiques dans un système formel finitiste

     

     

     


    Les limites de la connaissance 2) l'effondrement des fondations, L'empirisme logique

    Idées fortes de ce chapitre?


    Les idées de Quine sont dévastatrices pour l'empirisme logique,elles inaugurent une vision du monde qui refuse au savoir toute certitude assurée et qui remet en cause le statut même de la réalité extérieure.

    Quine est instrumentaliste: la science n'est que le discours le plus simple et le plus commode en adéquation avec nos expériences. Les objets physiques ne sont que des entités intermédiaires que nous postulons

     

    On est donc conduit en apparence au dilemme consistant à choisir entre une attitude sceptique (nous ne pouvons fonder rationnellement nos croyances), et un attitude dogmatique consistant à accepter un certains de postulats comme évidents et ne demandant pas à être justifiés (par exemple, croyance que nos théories reflètent la structure du monde).

    Les réflexions des épistémologues ultérieurs ainsi que les avancées faites par les scientifiques, loin de donner espoir d'arriver un jour à résoudre ces difficultés, n'ont fait qu'accentuer l'écart entre la certitude qu'on souhaiterait pouvoir attribuer à la science et le statut objectif qu'il convient de lui céder.


     

     

     

    En exergue:

    "Dans une arche, un bloc de faîte est supporté immédiatement par d'autres blocs de faîte, et finalement par tous les blocs de base collectivement, mais par aucun individuellement; Il es est de même des phrases, lorsqu'elles sont reliées dans une théorie. [... ]Peut-être devrions-nous même concevoir l'arche comme chancelant comme pendant un tremblement de terre; On comprend alors que même un bloc de la base ne pourra être soutenu, à certains moments, que par les autres blocs de base par l'intermédiaire de l'arche."                 Quine  (1960).

     

    1) Le cercle de Vienne et l'empirisme logique.

     

              a)Le cercle de Vienne et ses conceptions.

     

    Il s'est constitué, autour des années 1920, autour d'un noyau de départ formé du mathématicien Hans Hann, du physicien Philipp Frank et du sociologue Otto Neurath. Il a pris sa pleine mesure avec Rudolph Carnap le philosophe Moritz Schlick , puis les mathématiciens Kurt GodelGustav Bergman et Karl Mendel, l'historien Victor Kraft et deux étudiants Herbert Feigl et Friedrich Waismann. Il fut dissous après l'assassinat de Schlick en 1926. Mais l'empirisme logique, héritier de ces idées a exercé une influence,ce prépondérante sur des générations d'épistémologues et de logiciens de Quine, Hempel, et Goodman à Putnam, Von Wright et Hintikka. 

    Son espoir était de fonder la connaissance sur des bases certaines. A l'instar des empiristes classiques (Francis Bacon philosophe au 17e siècle), Jonh LockeGeorge Berkeley au 18e siècle, et Jonh Stuart Mill et Auguste Comte au 19e siècle) leur postulat de départ est que le monde extérieur nous est accessible uniquement à travers nos observations et que ce n'est que par l'expérience que nous pourrons acquérir les informations pour comprendre et décrire la réalité. Le sens d'un énoncé observationnel s'impose de lui-même et il ne peut résulter aucune ambiguïté tant qu'on se limite à des propositions du type: "à tel instant et en tel lieu, untel a observé directement tel mouvement...". 

    Le philosophes du cercle de Vienne disposent d'un nouvel instrument d'analyse, la logique formelle due à Frege, Russel et Elfred North Whitehead. Elle permet de formaliser et analyser le discours scientifique qu'on peut élaborer à partir des lois générales, des énoncés observationnels  et de leurs conséquences communes. A leur tour, celles-ci peuvent être traduites en énoncés observationnels, puis testés et donc vérifiés (les lois sont alors confirmées). C'est le modèle "déductif-nomologique", dont la rigueur et la cohérence permettent de nourrir les espoirs de construire une science rationnelle. La logique formelle utilisée pour analyser le langage ordinaire est censée y permettre d'éliminer les paradoxes, les ambiguïtés voire les non-sens. L'empirisme moderne a érigé en dogme le clivage entre les énoncés analytiques (significations indépendantes des faits) et les énoncés synthétiques (fondés sur les faits). Le cercle de vienne adopte une position anti-kantienne: aucun jugement synthétique à priori n'est possible. C'est dirigé contre la métaphysique en général et plus particulièrement l'idéalisme allemand (Hegel et Heidegger), qui selon les empiristes logiques, n'est qu'un discours vide de sens. Pour eux, une proposition n'a de sens que si que dans la mesure où elle est vérifiable expérimentalement (théorie vérificationniste du sens) et même selon le slogan de Schlick, le sens se réduit à à sa méthode de vérification. Par ailleurs, selon Wittgenstein, les vérités logiques et les définitions sont certaines car elles ne sont que des conventions de langage; les mathématiques et la logique se réduisent à des tautologies, vraies mais vides de sens (Tractatus logico-philosophicus). La science utilise donc les mathématiques et la logique comme outils analytiques n'apportant aucune connaissance empirique, mais ne contenant que des vérités; son contenu empirique provient des énoncés observationnels, qui peuvent être vérifiés. 

     

     

    Ce sont les pierres de base de l'édifice scientifique qui rendent compte des observations selon Carnap. Ils doivent être exprimés à l'aide des expériences sensibles du sujet agissant du type: "A tel moment et tel moment, en tel et tel lieu et sous telle et telle circonstance, tel et tel a été, est ou sera observé". Une telle réduction est cependant difficile pour des termes comme "électron " ou "champ". Ces terme, appelés "termes théoriques" par Carnap, peuvent-ils traduits dans le vocabulaire purement observationnel de la théorie? La réponse de Carnap et de Mach est positive. A partir des expériences sensibles du sujet connaissant comme éléments de base, il propose de construire une hiérarchie d'objets telle que chaque niveau puisse être réduit au niveau inférieur par des "définitions constructives". Ainsi tout énoncé scientifique peut ne porter que sur les objets de niveau le plus bas, les expériences sensibles. Tous les termes d'une théorie scientifique peuvent être alors traduits en énoncés protocolaires et la théorie est donc exprimable au moyen de lois générales ne portant que sur des entités observables.

     

              c) La théorie vérificationniste du sens.

     

    Ramener tout énoncé scientifique à à un ensemble de tels énoncés protocolaires est ce que Karl Hempel a appelé "l'exigence de vérificabilité complète". Pour les positivistes logiques, seuls les énoncés susceptibles d'être ainsi testés possèdent un sens, qui s'identifie donc avec le contenu empirique et même selon Schlick, avec la méthode de vérification. Ce critère de démarcation leur permet de rejeter en bloc l'idéalisme allemand et toute la métaphysique comme des discours ne développant que des suites de non-sens. Mais ne sont pas touchées les les propositions de mathématiques et de la logique dont Wittgenstein a montré dans le Tractatus qu'elles se réduisent à des tautologies, vraies, mais dénuées de contenu empirique. 

     

              d) L'induction.

     

     Pour les positivistes logiques, on obtient une loi en généralisant les occurrences particulières de même type d'un phénomène, par exemple, que si on suspend des masses à un ressort, on observera que l'allongement de ce dernier est proportionnel à la masse suspendue. Cette expérience, répétée avec des ressorts différents, le coefficient de proportionnalité n'est pas le même pour des ressorts différents, mais est la même pour chaque ressort: l'allongement est proportionnel à la masse. Cette loi est supposée applicable à tous les ressorts et à toutes les masses bien qu'elle n'ait été observée que pour un nombre restreint de ressorts et de masses.

    Formellement, l'induction est le mode d'inférence qui permet de passer d'exemples particuliers à une loi générale: étant donné l'observation d'un certain nombres d'objets de type A (A1, A2...An), possédant la propriété P, cad tels que P(A1), P(A2),...P(an), on infère que tout objet du type A possède la propriété P; Vi Ai € A =>P(Ai). Pour les positivistes logiques, l'induction est un des points fondamentaux de de l'explication et de la formation des lois scientifiques.

     

              e) Le modèle déductif-nomologique.

     

    Cette théorie repose sur trois pieds: 1) Les lois scientifiques (d'où l'adjectif nomologique). 2) Les conditions initiales. 3) Les règles logiques de déduction.

    En appliquant la logique (et les mathématiques) à la loi de la gravitation sous la contrainte des conditions initiales, il est alors possible (par exemple pour un caillou qu'on lance en l'air), de prédire les propriétés observables des occurrences particulières d'un phénomène (la position et la vitesse à tout instant ultérieur). Celui-ci, prédictible dans ses manifestations et ramené à à un cas particulier d'une loi générale, est alors considéré comme expliqué et donc compris. Pour le positivisme logique,, la science est donc une construction hors de doute puisqu'elle repose sur des données certaines, des règles de construction logiques et des lois admises.

     

    2) La libéralisation de l'empirisme logique.

     

              a) Cohérence et difficultés des positions du Cercle de Vienne.

     

    La conception des philosophes du cercle de Vienne possède une force de conviction et une cohérence indéniables. Elle permet de donner à la science une solidité et une certitude qui auraient ravi certains physiciens de la fin du 18e siècle, qui étaient persuadés que la physique était achevée... Elle ne peut que renforcer l'idée selon laquelle le savoir scientifique, par opposition aux  fausses sciences (l'astrologie, la psychanalyse) et à la métaphysique, dispose d'un statut supérieur, de par la rigueur de son fonctionnement. Malheureusement, les piliers sur lesquels il repose furent attaqué et rongés par ses propres héritiers.

    La possibilité de réduire le vocabulaire théorique au vocabulaire observationnel fut remise en cause par Carnap en 1936 et l'irrévocabilité de ces énoncés fut critiquée par Neurath et dut être abandonnée. Le critère de signification vérificationniste se montra trop restrictif et laxiste comme le montra Hempel. La distinction entre énoncés synthétiques et et analytiques ne résista pas à la critique de Quine et même la possibilité de réfuter une loi générale par une expérience cruciale fut abandonnée en raison du problème de Duhem-Quine. Les règles durent être assouplies, ce qui entraîna un net affaiblissement des certitudes quant à la construction scientifique.

     

               b) Les prédicats dispositionnels.

     

    L'espoir de Carnap que le vocabulaire théorique pouvait être ramené au vocabulaire observationnel fut anéanti par la considération des prédicats dispotitionnels de type "soluble" ou "fragile". Explicitée selon les règles de la logique formelle, cette définition s'explicite ainsi: Vx {S(x) = Vt[E(x,t) => F(x,t)]} où S(x) signifie x est soluble, E(x,t) signifie est plongé dans l'eau à l'instant t, F(x,t) signifie fond à l'instant t. Le problème vient du fait que  E=>F si E et F sont vraies mais aussi si E est faux quelle que soit la valeur de vérité de F. Donc un corps sera dit soluble si s'il est plongé dans l'eau et fond ou bien s'il n'est pas plongé dans l'eau.On conçoit que cette définition soit insatisfaisante, car tout corps à l'abri de l'humidité pourra être réputé insoluble

    Carnap tenta de résoudre ces difficultés à travers ce qu'il appela des "phrases de réduction". cela revient à restreindre la définition de soluble, par exemple de la manière suivante: si un corps est dans l'eau à l'instant t, il sera dit soluble si et seulement si il fond à l'instant t. Mais il devient impossible de dire si l'eau dans un sucrier est soluble. L'espoir de traduire le vocabulaire théorique en vocabulaire observationnel s'effondre. On ne peut plus considérer qu'un énoncé observationnel n'est doué de sens que s'il est strictement réductible à des énoncés protocolaires. Carnap a formulé une "exigence de de confirmabilité simple" (il suffit que certains cas particuliers soient vérifiables), mais il faut alors clarifier les liens entre un énoncé universel et ses occurrences. C'est le problème de l'induction.

             

               c) Le principe vérificationniste. 

     

    C'est le principe: un énoncé a un sens quand il est logiquement déductible d'un ensemble fini d'énoncés protocolaires (ce que Hempel appelle "l'exigence de vérificabilité complète". Mais qui vérifie l'énoncé? Faut-il un hypothétique observateur idéal? Le sens ne semble pas pouvoir être défini de manière absolue. Selon ce principe, aucun énoncé universel n'a de signification, car il ne saurait être déduit d'un nombre réduit, aussi grand soit-il d'énoncés. Cela condamne toutes les lois de la physique à n'être que des énoncés dépourvus de sens. D'autres conséquences indésirables comme "cette chaise chante la couleur rugueuse" satisfait le critère de vérification. 

    Hempel proposa alors comme critère de scientificité d'un énoncé, la possibilité de sa traduction dans un langage empiriste défini ainsi: si L est la langage, le vocabulaire de L contient les locutions de la logique (connecteurs, quantificateurs...), les prédicats d'observations constituant le vocabulaire empirique de L, les expressions définissables à l'aide des éléments précédents et enfin des règles de formation dénoncés telles que celles données dans les Principia Mathématica de Russel et Whitehead. On peut ainsi lever les objections provenant des connecteurs et des quantificateurs, mais reste le problème des prédicats dispositionnels.

     

              d) La logique inductive.

     

    Devant le problème des lois universelles non réductibles à la conjonction d'un nombre fini d'énoncés, Carnap essaya de construire une logique inductive si la loi, bien que non vérifiée dans sa totalité, est confirmée à un certain degré par les occurrences constatées. Certes, on sait depuis le célèbre critique de Hume, que l'induction n'est pas un mode de raisonnement valide, contrairement à déduction pour laquelle la vérité des prémisses garantit celle de la conclusion. Carnap voulait construire à travers le concept de probabilité logique, un moyen de calculer le degré de confirmation qu'apporte un énoncé singulier à une hypothèse universelle. Les probabilités logiques ne sont pas des probabilités fréquentielles, mais sont liées au contenu logique (à l'ensemble des conséquences) des énoncés. Cela permet de ramener les lois universelles dans le champ de la science. Malheureusement, comme cela le fut fortement souligné par Popper, et reconnu par Carnap, le degré de confirmation de toute loi universelle dans un monde infini ne peut être différent de zéro. Hempel essaya de un critère de confirmation non quantitatif, mais se heurta à des difficultés, et on n'aboutit à aucune réponse satisfaisante. Goodman mit en évidence par l'intermédiaire de son célèbre paradoxe: la difficulté de déterminer si un prédicat est projectible (si on a le droit de faire une induction le concernant). L'observation d'un grand nombre d'objets de type A possédant la propriété P et d'aucun objet du type P ne la possédant pas, nous incite à induire que tout objet du type A possède la propriété P par exemple: toutes les émeraudes sont vertes). Le prédicat "vert" est projectible. Paradoxe:  soit le prédicat "vleu", défini par "vert" si observé avant 2011 ou "bleu" sinon.Les émeraudes observées jusqu'à présent sont "vertes", mais aussi "vleues". Son induit que toutes les émeraudes sont "vleues", alors une émeraude observée en 2012 sera "vleue". Ce paradoxe n'est pas encore résolu. 

    Certains, comme Boudot en concluent que l'absence d'une logique inductive n'est pas un échec momentané qui résulterait de l'insuffisance de la recherche, mais le signe de son impossibilité radicale. 

     

              e) Les énoncés protocolaires.

    Les énoncés protocolaires perdent ainsi leur statut de privilégiés et doivent aussi satisfaire le critère de vérification. Neurath le remit en cause au nom du principe même de vérification. Aucun énoncé ne doit être inébranlable et considérer les données des sens comme se référant à une réalité extralinguistique est  un présupposé métaphysique inacceptable. Il est par ailleurs impossible de déterminer des énoncés protocolaires purs et en conséquence les énoncés de base de la science n'ont pas à faire référence aux données des sens.Ils doivent être ceux du langage naturel, du langage de la physique purifié de ses éléments inadéquats à l'édification de la science.C'est la thèse du physicalisme, qui stipule de plus que les énoncés ne peuvent être comparés qu'avec d'autres énoncés, et non pas directement avec les faits.  Mais que voulons nous dire lorsque nous parlons de fait ou de réalité?

    Wittgenstein avait avancé que dans le Tractatus, que que cette correspondance était une similitude structurelle, mais cette idée, finalement fausse, avait obscurci le problème.Dans le physicalisme, le concept de vérité évolue de donc de la vérité-correspondance (est vrai un énoncé qui correspond aux faits), à la vérité-cohérence (est vrai un énoncé qui ne contredit pas les énoncés déjà acceptés). Il y a donc effondrement de de la construction originelle de l'épistémologie positiviste. La distinction entre théorie et observation s'estompe et la connaissance perd ses bases certaines. Carnap essaya bien de construire des règles syntaxiques permettent d'éliminer du langage ordinaire toutes les phrases contradictoires ou dépourvues de sens, pour que tout énoncé bien formé soit automatiquement pourvu de signification empirique et montrer que la métaphysique n'est qu'un discours vide de sens. Mais il reconnut que qu'il est impossible de se passer de considérations sémantiques.

    Schlick fit remarquer que que la cohérence n'est pas une condition suffisante de vérité sinon un conte de fées, ne contenant aucune affirmation contradictoire avec les autres, devrait être considéré comme vrai. De plus, il mit en avant l'incompatibilité entre le physicalisme et l'empirisme, "la science n'est pas le monde".  Carnap se tourna alors vers la théorie sémantique de la vérité-correspondance de Tarski: l'énoncé "la neige est blanche" est vrai si et seulement si la neige est blanche. Cette formulation permet de parler à la fois des énoncés et des faits auxquels ils se rapportent dans un métalangage sémantique en faisant disparaître les difficultés liées à la notion de correspondance entre un fait et un énoncé. L'explication de Tarski emporta l'adhésion générale. Mais les critiques de Neurath sur le caractère certain des énoncés protocolaires avaient réussi à saper la base observationnelle et conduit à une conception relativiste de la connaissance. 


    3) Autres positions.


              a) Les critiques de Karl Popper


    Pour Popper, vouloir éliminer la métaphysique en montrant qu'elle n'est qu'un discours vide de sens est à la fois inutile et sans espoir. Ce qui distingue la métaphysique de la science, ce n'est pas l'abscence ou la présence de sens, mais la testabilité: un énoncé est scientifique (donc pourvu du'un contenu empirique) si et seulement si il est réfutable par l'expérience. Ce principe de faslifiabilité est un critère de démarcation entre science et métaphysique et non pas un critère de signification. Les critères de signification proposés par Carnap sont non seulement insatisfaisants, mais peuvent être dangereux pour la science car certains énoncés scientifiques pourraient en être exclus. Il propose de construire dans un langage physicaliste  qui est censé assurer que les propositions qui suivent sa syntaxe sont pourvues des sens, ce qu'il appelle la proposition métaphysique suprême: "il existe un esprit personnel omniscient, omniprésent et omnipotent."  Il est vain de prétendre qu'on peut construire un langage physicaliste qui serait celui de la science unifiée et d'où la métaphysique serait bannie par construction. De même les énoncés de réduction que Carnap avait proposés pour résoudre le problème des prédicats dispositionnels n'est pas une solution satisfaisante, car elle est circulaire. Mais cela ne gêne pas Popper car il remet en cause la position des empiristes logiques sur les énoncés de base. 

    En effet, pour Carnap et les empiristes logiques il existe des énoncés de base (énoncés observationnels considérés comme indubitables) sur lesquels s'appuie l'édifice de la science. Que ce soient des rapports d'observation portant sur les objets physiques directement (physicalisme de Neurath et Carnap), ou des compte-rendus privés d'expériences sensorielles (Schlick), ces énoncés, bien que corrigibles demeurent une base solide.

     Mais dit De Fries, comment justifier ces énoncés pour éviter qu'ils deviennent des dogmes?  sa réponse est : ils ne peuvent être justifiés que par d'autres énoncés; il y a donc régression à l'infini, sauf si on fait appel au psychologisme qui permet de justifier un énoncé à partir des perceptions. Popper le refusera, mais évitera la régression à l'infini en proposant que la justification soit basée à un moment donné sur un consensus qui permet d'accepter certains énoncés provisoirement. Mais il y a un prix à payer: on ne sera jamais certain de la sûreté d'un énoncé. Popper l'accepte, car il a construit toute son épistémologie sur le rejet de la certitude absolue. Les théories scientifiques sont des hypothèses que que nous faisons à un moment donné pour résoudre les problèmes empiriques que nous nous posons. Elles ne sont pas construites par induction, mais émises dans le but d'en déduire des conséquences qui seront confrontées avec la réalité. On ne pourra jamais prouver une hypothèse qui a la forme d'un énoncé universel, mais on pourra la réfuter si une de ses conséquences est en désaccord avec l'expérience, ou la corroborer si ses conséquences sont vérifiées. Ainsi, la science ne pourra jamais atteindre la vérité. Elle avance par conjectures et réfutations; plus une théorie aura subi avec succès des tests sévères et variés, mieux elle sera corroborée. 

    Popper attaque aussi la les tentatives de Carnap de construction d'une logique inductive. La théorie de la probabilité logique est est paradoxale et manque son but puisque toute lois a une probabilité nulle quelles que soient les évidences empiriques (en nombre forcément fini) en sa faveur, alors que certains énoncés métaphysiques peuvent avoir un probabilité proche de 1. Son épistémologie, qui prend le contre-pied de beaucoup des positions fondamentales des philosophes de de Vienne est hypothético-déductive contrairement à celle de l'empirisme logique qui est inductive à partir des énoncés d'observation. 

    Quant à la question de savoir comment les chercheurs se mettent d'accord sur les énoncés de base consensuels. Pour Popper, cette question relève de la psychologie ou de la sociologie, mais cette réponse n'est pas satisfaisante. Son système est entièrement hypothético-déductif met cependant en avant  le concept de degré corroboration: une théorie sera d'autant mieux corroborée qu'elle aura satisfait un nombre plus important de tests et que ceux-ci seront sévères. Cela rappelle étrangement au degré de confirmation de carnap que Popper rejette fortement. Ce degré de corroboration se rapporte aux performances passées de la théorie et ne dit rien de ses capacités futures de prédiction. Mais Lakatos fit remarquer qu'en l'absence d'un principe inductif, rien ne justifie une préférence d'une théorie à une autre moins bien corroborée.

    Par ailleurs, Popper, en réaliste convaincu, avance le concept de vérisimilitude d'une théorie qui est censé mesurer le degré auquel cette théorie correspond à la réalité. Il compare l'ensemble des conséquences vraies (son "contenu de vérité") et l'ensemble des conséquences fausses ("contenu de fausseté") de deux théories. Cette idée, pourtant séduisante n'a jamais pu être appliquée (comme le montra David Miller), car deux théories fausses ne peuvent jamais être comparées, car aucune des deux conditions qu'elle implique n'est jamais satisfaite. Quant au critère de démarcation falsificationniste, il souffre de difficultés symétriques de celles du critère de signification vérificationniste. En effet, les propositions universelles du type  "Vx P(x)" sont scientifiques si si P est un prédicat observable, car il suffit d'exhiber un x tel que "non" P(x) pour les réfuter. En revanche aucune proposition existentielle du type "E (il existe) P(x)" ne l'est puisque puisque pour la réfuter, il faudrait vérifier sur l'ensemble infini des x qu'aucun x ne vérifie P.  

     

              b) L'épistomologie pragmatique de Quine. 


    Quine va plus loin que Popper dans sa critique des dogmes empiristes et son épistémologie pragmatique aboutit à la nécessité de l'abandon complet du fondationalisme. Il s'attaque à à la distinction entre énoncé analytique et énoncé synthétique dont il démontre qu'elle n'est pas fondée. En partant de la définition de Kant selon laquelle un énoncé analytique est un énoncé qui est vrai en vertu de la signification des termes qu'il  contient et indépendamment des faits.


     Que dire du concept de signification? De même qu'en physique, où on prend comme entité de base la relation d'égalité de poids pour une définition opérationnelle, il Quine se concentre sur la notion de synonymie qui lui permet d'éliminer le concept obscur de signification. Il définit le concept de vérité logique comme étant celui d'un énoncé vrai qui reste vrai pour toute réinterprétation de ses constituants autres que les termes logiques (connecteurs, quantificateurs). Ainsi l'énoncé "aucun homme non marié n'est marié" reste vrai quelque soit la manière dont on réinterprète les termes "homme" et "marié". Ainsi: "aucun nuage non noir n'est noir. L'énoncé "aucun célibataire n'est marié" n'est pas une vérité logique. Mais si on remplace les termes (ici "célibataire") par des synonymes (ici "homme non marié", l'énoncé est transformable en vérité logique. Il est donc possible de définir un énoncé analytique comme un énoncé qui est, soit une vérité logique, soit transformable en une vérité logique en remplaçant certains de ses termes par des synonymes. Maintenant, le problème consiste à à définir la synonymie entre deux termes. Les démarches suivantes sont possibles:

    a) Deux termes sont synonymes quand l'un est la définition de l'autre.Cette solution est une illusion car elle repose sur une synonymie préalable plutôt qu'elle ne l'explique. 

    b) Les deux termes peuvent être substitués "salva veritate", selon l'expression de Leibniz (sans changement de valeur de vérité) dans un énoncé. Mais cette définition est trop laxiste et laisse passer pour synonymes des termes qui ne le sont pas. 

    c) Renforcer le critère en proposant la substituabilité salva veritae même au sein d'énoncés contenant des adverbes modaux du type "nécessairement". Mais il y a lors circularité car la compréhension de l'adverbe modal présuppose la notion d'analyticité.

    d) Synonymie extensionelle: deux prédicats sont synonymes s'ils sont vrais des mêmes choses. Mais elle n'est pas identique à la synonymie cognitive, comme le montre l'exemple des deux prédicats "créatures avec des reins" et et "créatures avec un coeur", qui ont la même extension mais qui ne signifient la même chose.

    Quine renverse alors sa stratégie en essayant de définir directement l'analycité. La vérité d'un énoncé provient de deux composantes: à la fois à cause de la signification de ses termes et en raison de faits extérieurs. Ainsi, dans l'énoncé "la neige est blanche"  est vrai, c'est à la fois parce  que "neige" veut dire neige et "blanche" veut dire blanche, mais aussi parce que la neige est blanche. La vérité a donc une composante linguistique et une composante factuelle. On pourrait définir un énoncé analytique comme un énoncé vrai dans lequel la composante factuelle est nulle.  Mais il semble à Quine que c'est une profession de foi métaphysique. 

    Alors il s'interroge sur la nature des relations entre les énoncés et les expériences qui contribuent à augmenter ou diminuer sa confirmation et élimine le réductionnisme radical (cette relation est fournie sous forme de constatation directe et un énoncé pris isolément est susceptible d'être confirmé ou infirmé). Il prétend que ce n'est que collectivement que les énoncés sont livrés au tribunal de l'expérience. Comme Duhem, il pense que la confirmation ou la réfutation ne vise pas une hypothèse isolée, mais l'ensemble du corpus scientifique; l'unité de signification empirique n'est pas l'énoncé, mais la totalité de la science. Cela efface définitivement tout espoir de définir l'analycité grâce au critère vérificationniste mais enlève aussi toute pertinence à ce critère. 

    Ce holisme donne de graves difficultés au critère falsificationiste de Poper: est-ce la théorie testée qui est réfutée ou une hypothèse auxiliaire? Le holisme sémantique (selon lequel l'unité de signification est la science toute entière) découle logiquement du holisme épistémologique de Duhem (selon lequel on ne vérifie jamais une hypothèse isolée) et de la théorie vérificationiste de la signification. De plus, ce holisme épistémologique de Quine ne se limite pas à la physique, mais s'étend à tout le savoir ("Il est comparable à un champ de forces dont les frontières seraient l'expérience"). En cas de conflit avec l'expérience, des réajustements s'opèrent et de plus, il est sous-déterminé par les expériences. La méthode scientifique est le chemin pour trouver la vérité, mais elle ne fournit pas, même en principe, une définition unique de la vérité. Cela signifie que plusieurs théories contradictoires entre elles peuvent être conformes avec toutes les expériences faites mais aussi avec toutes les expériences possibles en droit (c'est la thèse de la sous-détermination). Seul le pragmatisme nous dicte quels sont les énoncés que nous avons intérêt à réviser.

    Les idées de Quine sont dévastatrices pour l'empirisme logique,elles inaugurent une vision du monde qui refuse au savoir toute certitude assurée et qui remet en cause le statut même de la réalité extérieure. Quine est instrumentaliste: la science n'est que le discours le plus simple et le plus commode en adéquation avec nos expériences. Les objets physiques ne sont que des entités intermédiaires que nous postulons pour que nos lois soient les plus simples possibles, mais rien ne nous garantit que leur existence est plus réelle que celle des dieux de l'antiquité. Même si une théorie "colle" aux observations passées, présentes et futures, la sous-détermination des théories interdit de penser que sa structure est une fidèle reflet de la réalité telle qu'elle est. Une autre théorie incompatible peut tout aussi bien "coller", alors qu'en déduire sur la structure de la réalité? Quine n'abandonne cependant pas l'empirisme, mais prône un pragmatisme permettant de considérer la science comme un instrument permettant de s'y retrouver dans l'expérience empirique. 


    4) Que reste-t-il de l'empirisme logique?


    Les difficultés que rencontrent les conceptions des empiristes logiques ne sont pas de simples objections éliminables par de légers aménagements, mais elles sont symptomatiques de maladies plus profondes qui touchent l'essence même du projet fonctionnaliste. 

    1) Le concept d'énoncés observationnels sur lequel on peut faire reposer de manière sûre l'édifice scientifique ne peut être maintenu. Il semble impossible de faire reposer la science sur l'observation de telle manière qu'aucun doute n'existe quant à ses énoncés de base. Cependant, sur quelle autre base s'appuyer?

    2) Le vocabulaire de la science ne peut être réduit à un vocabulaire ne faisant appel qu'à des entités observables. Certains termes comme les prédicats dispositionnels sont irréductibles et leur définition ne peut être donnée formellement de manière satisfaisante. De plus, tous les prédicats descriptifs sont dispositionnels et il faut donc abandonner l'idée de pouvoir traduire quelque terme théorique .que ce soit (comme "champ" ou "électron") en vocabulaire observationnel. La distinction, fondamentale pour les positivistes, entre théorie et observation disparaît et la science n'est pas décomposable entre une partie observationnelle et une partie et une partie théorique. C'est un mélange intime des deux.

    3) La possibilité de s'assurer de manière définitive de la vérité d'une théorie doit être abandonnée. Elle doit être considérée au mieux comme une hypothèse à confirmer. Mais le concept même de confirmation est sujet à difficultés.

    4) La possibilité de définir un critère définitif permettent au moins de caractériser le discours scientifique par rapport à tout autre type de discours (métaphysique, théologique ou charlatanesque), paraît rencontrer des obstacles insurmontables. 

    5) Le statut ontologique des objets physiques se voit ramené à celui des chimères, tout juste peut-on considérer qu'il en diffère par une question de degré.

    6) Enfin, la possibilité de construire des théories incompatibles, rendant compte aussi bien de l'ensemble des observations possibles, enlève tout espoir de connaître la structure intime de la réalité en supposant que celle de la théorie en est le fidèle reflet. 


    Les critiques se sont succédées jusque dans les années 1970. A partir de là on assista à la naissance d'une multitude de visions divergentes "prétendant" pallier les défauts du positivisme logique: réhabilitation de l'étude de l'histoire et de la sociologie des sciences qui avaient été écartées par le Cercle de Vienne (Thomas Kuhn), réalisme scientifique (Hilary. Putnam, R. Boyd), théorie anarchiste de la connaissance (P. Fereyabend), relativisme, scepticisme....

    On est donc conduit en apparence au dilemme consistant à choisir entre une attitude sceptique (nous ne pouvons fonder rationnellement nos croyances), et un attitude dogmatique consistant à accepter un certains de postulats comme évidents et ne demandant pas à être justifiés (par exemple, croyance que nos théories reflètent la structure du monde).

    Les réflexions des épistémologues ultérieurs ainsi que les avancées faites par les scientifiques, loin de donner espoir d'arriver un jour à résoudre ces difficultés, n'ont fait qu'accentuer l'écart entre la certitude qu'on souhaiterait pouvoir attribuer à la science et le statut objectif qu'il convient de lui céder.



    Pin It

    votre commentaire
  •  

    Les limites de la connaissance1) présentation

     

    La pensée.

     

    Les limites de la connaissance.


    Depuis toujours je suis émerveillé par la nature et ses mystères, avec laquelle je me suis éveillé par les images qui me restent encore du village de mon enfance et de son château (à voir dans l'article "Ma peinture huile: le village de mon enfance: Jumilhac le Grand en Périgord" -libellé peinture et fantastique). 


    La science nous permettra-t-elle un jour de tout savoir? Ne rêve-t-elle pas d'une formule qui explique tout? N'y aurait-il rien qui entrave sa marche triomphale? Le monde deviendra-t-il transparent à l'intelligence humaine? Tout mystère pourra-il être à jamais dissipé?


    Hervé Zwirn pense qu'il n'en n'est rien.La science, en même temps qu'elle progresse à pas de géant marque elle même ses limites. C'est ce que montre la découverte des propositions indécidables qui ont suivi le théorème de Gôdel. Ou celle des propriétés surprenantes du chaos déterministe. Ou encore les paradoxes de la théorie quantique qui ont opposé Einstein et Bohr  en mettant en cause toute notre manière de penser.

    L'analyse de ces limites que la science découvre à sa propre connaissance conduit à poser une question plus profonde: qu'est ce que le réel?


    Je commence ici une série d'articles que j'intitule "les limites de la connaissance", où j'exprime mon questionnement et mes réflexions en partant de l'analyse qu'en  fait Hervé Zwirn. Ceci est le premier article.


    1) La situation au 19ème siècle.

     Les savants pensent que la science est construite sur des fondations suffisamment assurées et solides pour que nous n'ayons pas à douter de la vérité des théories scientifiques. ils pensent que le monde qui nous entoure, tel que nous le percevons, constitue la réalité et qu'au moins en principe, la science est capable de décrire, de prédire, et d'expliquer la quasi-totalité de cette réalité. Si certains phénomènes échappent encore, ce n'est pas parce que la science ne peut pas les appréhender, mais uniquement les théories de l'époque ne sont pas achevées. Pour eux, il est certain que, peu à peu, les nouvelles avancées de la connaissance permettrons de diminuer la part de ce qui encore inconnu, imprévisible ou incompris, et que cette part devra finalement disparaître totalement, du moins devenir négligeable. Tel est l'avis de William Thomson, alias Lord Kelvin dans cette célèbre phrase:

              "La science physique forme aujourd'hui, pour l'essentiel, un ensemble parfaitement harmonieux, un ensemble pratiquement achevé."

    Ces savants se trompaient pour de multiples raisons. Un des mes objectifs est de mettre en évidence, sinon d'expliquer ces raisons pour lesquelles l'idéal de perfection absolue qu'on pourrait souhaiter à priori pour la science ne peut être atteint. Selon cet idéal, la science devrait être certaine, c'est à dire qu'elle devrait être édifiée de telle sorte que nous ne devrions avoir aucun doute sur la cohérence de sa construction, ni sur celle de ce qu'elle nous apprend. Elle devrait aussi nous permettre de prédire, avec une précision arbitrairement grande, et sur des périodes aussi longues que l'on veut, l'évolution de tout système physique microscopique ou macroscopique. Cet idéal, qui peut être considéré comme asymptotique, suppose qu'aucune limite ou frontière infranchissable ne sépare l'état actuel de la science et l'état parfait qu'elle atteindra dans un futur plus ou moins proche.



    2)  Situation au début du 20e siècle.

    Les réflexions épistémologiques menées au début du 20ème siècle dans le but de comprendre la construction du discours scientifique et de justifier la croyance en sa solidité ont montré que les fondations de la science n'étaient pas aussi assurées qu'on l'avait cru. En fait, celles-ci se sont effondrées.

     A voir: les travaux du cercle de Vienne et l'empirisme logique, puis le programme de Hilbert et le "indécidables". Par la suite, le concept même de vérité d'une théorie a été remis en question et a dû être abandonné.


    3) Notion de réalité extérieure.

    La notion de réalité extérieure, indépendante de tout observateur, de toute théorie ou interprétation, et ressemblant à peu de choses près à ce que nous en percevons, doit être fortement remise en question, à la fois pour des raisons philosophiques et des considérations issues des développements récents de la physique. La notion de prédictibilité pour des phénomènes physiques a dû être reconsidérée et découplée de la notion de déterminisme. On découvre dorénavant de vastes territoires qui échappent et échapperont toujours à nos tentatives pour les connaître et les prédire. Il peut paraître paradoxal que la science découvre elle-même ses propres limites, mais la contradiction n'est que superficielle et c'est le sens de ma recherche que d'en découvrir la signification profonde et les implications.


    4) Evolution du "savoir scientifique", limites intrinsèques, réalisme et monde quantique, doutes sur la réalité, que croire?

    La progression du savoir scientifique s'est faite dans un sens qui montre que les espoirs de connaissance certaine et totale de l'univers physique sont vains. Il n'est plus possible de soutenir que le discours scientifique possède des fondations assurées en toute certitude, que la vérité des théories scientifiques peut être démontrée, que la science décrit une réalité extérieure et indépendante, et que la plus grande partie de l'univers peut être modélisée de manière à devenir accessible à la connaissance rationnelle. L'univers ne se laisse pas domestiquer par le discours formel et de grandes parties (et la plus grande partie?) de ce qui le constitue resteront à jamais hors de notre portée, aussi bien au niveau matériel qu'au niveau conceptuel.

    Mais attention! Ce que pense Hervé Zwirn est qu'il ne s'agit nullement de défendre une position antirationnaliste laisssant la porte ouverte à toute interprétation faisant croire que le travail scientifique est vain, voire faux, favorisant les idées qui pensent que l'échec de la science à occuper totalement la totalité du territoire de l'univers peut être pallié par des connaissances plus mystiques, ésotériques ou parapsychologiques. Ce que justement permet la science, elle est la seule construction rationnelle (voir ci-après un premier commentaire sur le connaissance par philonett) à posséder ce pouvoir et elle permet de découvrir les raisons pour lesquelles ces territoires resteront à hors de notre portée et ces raisons montrent qu'il est vain de les appréhender par quelque moyen que ce soit. Ils nous échappent pour des raisons de complexité, de temps, de taille ou d'impossibilité matérielle qui découle des limitations de notre condition humaine.

    Selon H. Zwirn, prendre conscience de ces limites du pouvoir scientifique et préciser où et en quoi résident ces limites est une avancée cognitive majeure qui fait progresser dans la connaissance épistémologique du discours scientifique et dans la connaissance philosophique des rapports l'homme et l'univers. Tirer avantage de cette imperfection pour en conclure que n'importe quel discours alternatif peut lui être substitué, serait une erreur du même ordre que celle du jeune marié, qui découvrant que son épouse n'est pas aussi parfaite qu'il le pensait, se précipiterait dans la rue pour choisir une autre femme au hasard!. La science, malgré ses limites reste la plus efficace des tentatives de compréhension, de description et de prédiction de la nature. 


     

    5) Approche sur la conception du monde?

    Quelle est l'approche sur la conception du monde qu'on est en droit d'adopter au vu des connaissances acquises ausi bien en épistémologie qu'en mathématiques, en logique et dans les sciences dites "empiriques" comme la physique. Il semble possible et souhaitable d'éliminer les positions qui, bien qu'encore soutenues quelquefois, ne sont en fait plus acceptables. Certaines conceptions sont contradictoires ou bien démenties par les faits.

    Il faut abandonner beaucoup de croyances issues du sens commun, mais pas de manière erratique, et qu'il soit justifié apar des considérations valides.

    Une deuxième étape consiste à élaguer parmi les conceptions philosophiques en usage celles qui sont exclues an raison de ces considérations et à analyser les positions encore en lice.

    La derrière étape consiste à se forger sa propre conception en utilisant tout ou partie des matériaux passés au travers  le tamisde l'analyse, voire en formulant de nouveaux concepts sous la condition que caux-ci passent à travers le tamis.

    La controverse introduite par Sokal et Bricmont se rapporte "l'intrusion abusive" et erronnée par de nombreux philosophes appelés "postmodernes", de résultats scientifiques sortis de leur contexte. Il esr donc nécessaire de préciser dans quel sens doivent être entendus les résultats de ces analyses.


    6) Résumé de la démarche de H. Zwirn.

    *Dans un premier temps, il explicite les limites que les différentes disciplines ont permis de poser. Puis il propose une taxonomie de ces limites afin d'en déterminer le domaine de pertinence. ensuite il fait une analyse critique du panorama des principales positions philosophiques actuellement défendues. Et enfin, dans une approche prospective, il examine les conséquenses épistémologiques, philosophiques et métaphysiques de cette analyse.


    *Comment est-ce que je me situe par rapport à cette analyse?

    Cette approche me permet de répondre à ma soif de connaissances, dont la source est mon émerveillement pour la nature et ses merveilles, depuis mon enfance. Elle correspond à mon questionnement sur ces mystères, première attitude du philosophe si j'en crois mes lectures, et aussi à l'attitude que j'ai toujours eu, chercher à expliquer "le monde".

    Par ailleurs, dans la démarche que j'ai adoptée dans mes études, j'ai toujours refusé l'apprentissage "par coeur". Je veux savoir le "sens" et la signification "réelle" de ce que j'apprends. C'est peut-être explique que parfois, j'ai du mal à appliquer pratiquement ce qui m'est enseigné; il me faut du temps pour en assimiler toute la substance. Mais par le travail et l'amour du savoir, j'ai l'impression de connaître de plus en plus de choses.

    C'est ce que je souhaite réaliser dans cette partie de mon blog. Ce travail progressif sera réalisé au cours articles rédigés progressivement.

     

     



    L'ensemble des articles a pour but d'approfondir cette réflexion sur la connaissance et ses limitesEn préambule, voici un article que j'ai trouvé sur le net et qui donne quelques pistes de réflexion, le point de vue de Philonet.


    Le point de vue de "PHILONET": voir http://philonet.free.fr/ S2.htm

    La connaissance que nous avons du monde extérieur n’est-elle possible que par l’intermédiaire des sciences ? Celles-ci ne risquent-elles pas de limiter notre approche du réel ? En un mot, tout est-il dit lorsque les sciences ont parlé ?

     

    Plan :

    1- La spécificité et les limitations de l’approche du réel par les sciences ?

    1.1  – Science, opinion et savoir-faire

    §         – connaître et posséder, le renoncement aux illusions de la pensée magique (Bachelard)

    §         – le savoir-faire  s’oppose au savoir penser (Alain)

    §         – la science met en ordre les phénomènes du monde en y repérant des modèles rationnels

    1.2  – Les exigences de l’approche rationnelle du réel 

    §         – cohérence interne et externe, non-contradiction, nécessité, suffisance, nécessaire retour au réel, soumission au verdict de l’expérience

    §         – empirisme naïf et construction rationnelle (Bachelard)

    1.3  – Cependant, les sciences ne peuvent prétendre s’imposer comme savoir absolu sur le réel : les limites de la vérité dans les sciences : la falsifiabilité comme exigence incontournable de l’éthique scientifique. (Popper)

    Conclusion partielle 1 : L’homme moderne, par le développement des sciences a su constituer un mode de connaissance original du réel : la connaissance scientifique a construit un monde à la mesure de la raison humaine. Loin d’un empirisme naïf, elle fait sienne cette maxime de Bachelard : rien n’est donné, tout est construit.

     

    2- Le réel peut-il être réduit à ce que la science peut en connaître ?

                2.1 – La science réduit le réel à ce qui est rationalisable dans le réel :

    §         analyse d’un exemple : un phénomène naturel, la foudre qui va être réduit dans une conception rationnel à un ensemble de relations causales et de phénomènes quantifiables, au détriment de ce que le sensible et l’imaginaire pourrait en dire.                   

    2.2 – La science interpose entre le réel et nous un tissu d’idéalités qui nous la masquent

    §         L’univers des sciences se coupe et s’éloigne de la réalité sensible et vécue par tous. Risque de ne voir dans la nature qu’un ensemble de relations déterminées

    2.3 – La science, loin de résoudre la solitude ontologique de l’homme risque de la renforcer : elle prend le parti de l’intelligible contre le sensible, du concept contre le percept (Bergson)

    Conclusion partielle 2 : la connaissance scientifique voulait nous rapporcher du réel, mais elle ne le peut qu’au prix d’une réduction et d’une simplification. Pire, elle substitue au monde réel une construction rationnelle qui nous en masque l’essence.

     

    3 - D’autres connaissances du réel sont-elles possibles ? sont elles opposables à la science ?

    3.1 – La connaissance pratique et le savoir-faire

    §         le savoir faire a sa grandeur : noblesse et spiritualité de l’outil (Aristote)

    §         Notons qu’il n’est pas totalement indépendant de la science

    §         l’homme prométhéen : s’emparer du réel pour le transformer (Descartes)

    3.2 – La connaissance métaphysique et morale

    §         Le réel et son dépassement : la quête du sublime (Hegel)

    §         Donner sens et valeur au monde réel

    §         Répondre à la question « pourquoi » là où la science ne peut que répondre à la question « comment »3.3  - L’approche esthétique du monde constitue-t-elle un  « savoir de ce monde » ?

    §         L’art, et l’art est capable de combler le gouffre qui nous sépare du réel en constituant entre lui et nous une « tierce réalité, l’œuvre d’art. (Huyghe)

            L’art comme élargissement de la perception (Bergson)

    Conclusion partielle 3 : Là où la science échoue partiellement dans son désir de nous faire connaître le monde dans son ipséité, d’autres modes de connaissance peuvent développer d’autres points de vue possibles sur le réel.

     Conclusion :

    On ne peut donc limiter notre connaissance du réel à la seule connaissance scientifique. Celle-ci a sa grandeur, mais ne témoigne que d’un seul type d’approche des phénomènes du monde, auquel on ne peut limiter notre regard sur le réel. L’homme ne sait où se mettre et l’erreur humaine ne fait qu’un avec l’errance (Canguilhem), il ne sait comment regarder le monde : la pluralité des approches résulte de cette solitude ontologique qu’il revient à l’ensemble des productions culturelles, et pas seulement à la science, de combler


    Pin It

    votre commentaire
  •  

    Les limites de la connaissance 3) le programme de Hilbert et les indécidables. 

    Partie 2) les indécidables.

     


     

     

    Les limites de la connaissance 3) le programme de Hilbert et les indécidables

    . Partie 2) les indécidables.


    Préambule.

     

    La science nous permettra-t-elle un jour de tout savoir? Ne rêve-t-elle pas d'une formule qui explique tout? N'y aurait-il rien qui entrave sa marche triomphale? Le monde deviendra-t-il transparent à l'intelligence humaine? Tout mystère pourra-il être à jamais dissipé?


    Hervé Zwirn pense qu'il n'en n'est rien.La science, en même temps qu'elle progresse à pas de géant marque elle même ses limites. C'est ce que montre la découverte des propositions indécidables qui ont suivi le théorème de Gôdel. Ou celle des propriétés surprenantes du chaos déterministe. Ou encore les paradoxes de la théorie quantique qui ont opposé Einstein et Bohr  en mettant en cause toute notre manière de penser.

    L'analyse de ces limites que la science découvre à sa propre connaissance conduit à poser une question plus profonde: qu'est ce que le réel?

     

     

    La certitude en mathématiques. 

     

    Les conclusions de l'article sur l'empirisme logique aboutissent à une vision du monde qui refuse au savoir toute certitude assurée et qui remet en cause le statut même de la réalité extérieure; la science n'est que le discours le plus simple et le plus commode en adéquation avec nos expériences; Les objets physiques ne sont que des entités intermédiaires que nous postulons pour que nos lois soient les plus simples possibles, mais rien ne nous garantit que leur existence est plus réelle que celle des dieux de l'antiquité. 

     

    Le programme finitiste de Hilbert.

    L'idée de Hilbert est d'enfermer la totalité des mathématiques dans un système formel finitiste

     

    Ces espoirs ont été ruinés par les théorèmes de Gödel les "indécidables".


    Les indécidables

              Philosophie du théorème de Godel.

    Il existe clairement une différence entre vérité et prouvabilité contrairement à ce que pensait Hilbert. Il est donc impossible de construire un système formel complet qui constituerait le cadre axiomatisant l'ensemble des mathématiques et permettant de donner une preuve de toutes ses vérités. La vérité ne se laisse pas réduire aux preuves formelles et la sémantique n'est pas réductible à la syntaxe.

     


    1) Le théorème de Gödel.

     

              a) présentation.

    Sa première partie stipule que "dans tout système formel assez puissant pour formaliser l'arithmétique, si le système est consistant, il existe une proposition indécidable, c'est à dire vraie mais qu'on ne peut pas prouver", contrairement à ce que souhaitait établir Hilbert. Il en existera en fait une infinité. La démonstration de Gödel consiste à exhiber une proposition universelle (cad du type Vn P(n)) concernant les nombres entiers dont on veut s'assurer qu'elle est vraie (cela découle de sa construction) et dont il est possible de montrer qu'elle n'est pas démontrable. La proposition en question st complexe et Gödel ne la donne pas sous une forme explicite, mais ce serait possible, bien que fastidieux. Contrairement à ce qu'on pourrait croire naïvement, il ne suffit pas d'ajouter cette formule aux axiomes pour que toute formule vraie devienne démontrable, car le théorème nous dit que, dans ce nouveau système, il existera aussi une formule indécidable et ainsi de suite à l'infini. On a vu qu'il s'agit d'incomplétude syntaxique, l'arithmétique étant sémantiquement complète en tant que théorie du premier ordre.

    La deuxième partie du théorème stipule que "si le système est consistant, il est impossible de démontrer la consistance du système à l'intérieur du système lui-même". La signification de cette partie, plus difficile à saisir sera explicitée au cours de l'article. Cela ruine le deuxième espoir de Hilbert (prouver par des moyens formels finitistes que le système formel dans lequel on se place est consistant).


              b) L'arithmétisation de la logique.

    Cela consiste à pouvoir représenter par des formules arithmétiques des assertions métamathématiques qui portent sur des objets  qui sont les formules ou les calculs arithmétiques ("2+3=5" ou "Vn, n puiss2 = 1+2+...+2n-1").

    S'intéresser non pas directement aux formules mais à leurs propriétés (comme celle d'être une sous-formule ou d'être prouvable), c'est se placer à un méta-niveau. Ainsi, la phrase "la formule "2 + 3 = 5" est prouvable, mais la formule "3 x4 = 10" ne l'est pas" est une assertion non de l'arithmétique, mais de la méta-arithmétique. L'astuce de Gödel consiste à associer à une formule de l'arithmétique, de manière unique, à toute assertion du méta-niveau (méta-assertion). La méta-assertion "la formule "4x3 = 10 n'est par prouvable" est équivalente à "l'arithmétique est consistante", puisqu'on a vu que si un système est inconsistant, toute formule est prouvable. Si la formule qui représente une méta-assertion est vraie, alors la méta-assertion l'est aussi. C'est cette association d'une formule à toute méta-assertion, de sorte que la méta-assertion soit vraie si et seulement si la formule  est vraie, qui effectue la représentation du méta-niveau dans le niveau.

    L'idée de Gödel consiste d'abord à exhiber une formule arithmétique universelle G  (cad de la forme Vn P(n) telle qu'elle représente l'assertion de méta-niveau "G n'est pas prouvable". Si le système est consistant, alors, si la formule G est démontrable, G est vraie et la méta-assertion qu'elle représente est vraie. Or, cette méta-assertion dit que la formule G n'est pas démontrable. Il y a donc une contradiction. Ainsi G n'est pas démontrable. Donc la méta-assertion est vraie et G est vraie sans démontrable. C'est la première partie du théorème qui qui montre l'existence de propositions indécidables. 

    La deuxième partie du théorème: la consistance d'un système formel concernant l'arithmétique n'est pas prouvable dans le système lui-même. Soit "Cons" la formule de l'arithmétique représentant la méta-assertion "l'arithmétique est consistante". La formule   "Cons--> G" est donc vraie et il est possible de montrer qu'elle est démontrable. Supposons donc qu'on puisse démontrer "Cons", dans ce cas, par modus ponens, on a :                         Cons--> G;  Cons; serait une preuve de G, ce qui n'est pas possible. 


    Ceci n'est pas une démonstration rigoureuse. Gödel commence alors par montrer qu'il est possible d'assigner un nombre unique à chaque symbole, à chaque formule et à chaque preuve de l'arithmétique. Ce nombre est appelé son "nombre de Gödel". Tout nombre entier n'est pas forcément nombre de Gödel d'un objet, mais le procédé est tel qu'il existe une correspondance biunivoque entre les objets (symbole, formule, preuve), et leur nombre de Gödel. Toute assertion portant sur les objets du système peut être traduite en une formule portant sur les nombres de Gödel de ces objets. Par exemple, le fait pour un nombre de Gödel a d'être celui d'une formule (pas d'un symbole ou d'une preuve), s'exprime comme une propriété du nombre a. Il est donc exprimable par une formule portant sur a, notée F(a). Le fait pour une formule F d'être une sous-formule d'une formule G (assertion du méta-niveau), s'exprime par le fait que le nombre de Gödel de F (le ng de F) est un facteur de celui de G, ce qui est une formule arithmétique. De même, le fait pour une preuve de ng a d'être la démonstration de la formule de ng b s'exprime par une formule arithmétique entre a et b (très complexe). On note Dem (a;b) la formule arithmétique qui représente le fait que ng a est une démonstration de de la formule de ng b. Si elle ne la démontre pas, on l'exprime par --, Dem (a,b).

    La consistance de l'arithmétique (équivalente au fait qu'il existe une formule non démontrable), peut donc s'exprimer par la formule: Eb F(b) ^Va --, Dem(a,b). Ainsi, par ce procédé, toute assertion de méta-niveau sera représentée de manière unique par une formule arithmétique telle que la méta-assertion sera vraie si et seulement si la formule associée est vraie. 


              c) Principales étapes de la démonstration de Gödel.

    Première partie du théorème.

    Il existe une infinité de manières d'assigner un nombre de Gödel aux objets d'un système. Supposons que le nombre de Gödel de la variable y soit 13. On considère alors l'expression sub (m,13,m), à laquelle on donne la signification: c'est le nombre de Gödel obtenu à partir de de la formule du ndg m quand on substitue à la variable qui porte de ndg 13 (cad y) le symbole représentant le nombre m (Le nombre 2 s'écrit "ss0" si le vocabulaire est limité à "0" associé au nombre 0 et "s" associé à la fonction successeur). On part de la formule du ndg m (100). On remplace dans cette formule toutes les occurrences de la variable y (13) par par le symbole représentant le nombre m (100). La formule obtenue porte un ndg qui est sub (100,13,100). 

    Il en résulte que sub (y,13,y) signifie:  le ndg obtenu à partir de la formule de ndg y quand on substitue à la variable qui porte le ndg 13 (cad y) le symbole représentant le nombre y. 


    Considérons maintenant la formule A: Vx --, Dem (x,sub (y,13,y)) qui signifie que la formule dont le ndg est sub (y,13,y) n'est pas démontrable. Cette formule A possède un ndg. Supposons que ce soit n. Substituons dans la formule A le symbole du nombre n à la variable de ndg 13(cad y). On obtient: Vx Dem(x, sub (n,13,n)) qu'on appellera formule G. Quel est le ndg (nombre de Gödel) de cette formule? C'est sub (n,13,n) puisque sub (n,13,n) est le ndg de de la formule obtenue à partir de la formule de ndg n, cad de la formule A en y substituant le symbole représentant le nombre n à la variable y. Or que dit la formule G? Elle dit que la formule de ndg sub (n,13,n), c'est à dire elle-même n'est pas démontrable. C'est la proposition universelle G évoquée au chapitre précédent qui représente la méta-assertion G n'est pas prouvable. On a donc construit une formule mathématique telle que le sens de la méta-assertion associée est "la formule qui me représente n'est pas prouvable). On pourra ainsi avoir l'impression que le théorème est démontré, mais le raisonnement présenté est de nature métamathématique. Il n'est donc pas suffisant pour la rigueur qui a été fixée de en exigeant que toute démonstration puisse se faire sous la forme d'une dérivation formelle à l'intérieur du système. 

    Nous devons donc maintenant démontrer formellement (et non pas sémantiquement) que G n'est pas prouvable si le système est consistant. La preuve est la suivante. Si G l'était, il existerait une suite de formules qui est une démonstration de G. soit k le ndg de cette démonstration. La formule Dem (k, sub (n,13,n)) est donc vraie et il est possible de montrer que dans ce cas, elle est démontrable. On peut en dériver Ex Dem (x, sub (n,13,n)) qui est équivalente à  --,Vx --, Dem (x, sub (n,13,n)) c'est à dire à --, G. On a donc une démonstration de G et une démonstration de --, G, ce qui est impossible si le système est consistant. Donc si le système est consistant, G n'est pas prouvable, et réciproquement si --, G est démontrable, alors G l'est aussi. Donc, ni G ni --, G ne sont démontrables. Mais G est vraie puisqu'elle exprime justement qu'elle n'est pas démontrable, c'est ce qu'on appelle un indécidable.

    Deuxième partie du théorème:

    On vient de montrer que la méta-assertion "si le système est consistant alors il existe une formule vraie non démontrable" est vraie. Elle peut être à son tour représentée par la formule: Eb F(b) ^ Va --, Dem (a,b) --> Vx --, Dem(x, sub(n,13,n)), soit: "Cons--> G". On peut montrer que cette formule est démontrable. Supposons alors que "Cons" soit démontrable, il s'ensuivrait par modus ponens (comme vu dans le paragraphe précédent) que G le serait aussi, ce qui n'est pas possible en raison de la première partie du théorème. 


              d) Philosophie du théorème de Godel.

    Il existe clairement une différence entre vérité et prouvabilité contrairement à ce que pensait Hilbert. Il est donc impossible de construire un système formel complet qui constituerait le cadre axiomatisant l'ensemble des mathématiques et permettant de donner une preuve de toutes ses vérités. La vérité ne se laisse pas réduire aux preuves formelles et la sémantique n'est pas réductible à la syntaxe. De plus, il n'est pas possible non plus de montrer la consistance d'un système formel contenant l'arithmétique par des procédés finitistes qui se laissent représenter à l'intérieur du système. Cela ne signifie pas cependant que qu'il soit impossible de de démontrer la consistance d'un tel système formel, des preuves faisant appel à des procédés métamathématiques extérieurs au système peuvent être construites. On peut prouver rigoureusement que la formule non démontrable est vraie par des moyens sémantiques extérieurs au système. Mais le but de Hilbert était d'obtenir un preuve syntaxique afin d'éliminer tout recours à l'intuition. Il en résulte que les moyens utilisés par ces moyens extérieurs au système sont à leur tout susceptibles d'être mis en doute...

    Nota: On sait maintenant qu'il est possible d'obtenir une preuve syntaxique de consistance de l'arithmétique (la 1ère date de 1936 par Gentzen). Elle fait appel au principe d'induction transfinie jusqu'à l'ordinal epsilon0, le plus petit ordinal venant après la suite des ordinaux oméga...Mais elle n'est pas finitiste au sens strict et ne se laisse pas représenter dans l'arithmétique.


    2) Les indécidables.


               a) Présentation.

    On a longtemps considéré que le résultat de Gödel n'a aucune conséquence sur les mathématiques que présentent réellement les mathématiciens. Dieudonné écrit en 1982: "la proposition indécidable établie par Gödel paraît très artificielle, sans lien avec aune partie de la théorie des nombres actuelle; sa principale utilité était d'établir l'impossibilité d'une preuve de la non-contradiction de l'arithmétique. Parmi les nombreuses questions classiques non résolues de la théorie des nombres, on n'a pas encore, à ma connaissance, étable que l'une d'elle est indécidable." La formule n'est pas explicite et beaucoup de mathématiciens pensaient qu'en dehors ce type de formules expressément construites à cet effet, les énoncés normaux étaient prouvables ou réfutables. Mais en 1977,Jeff Paris et Harrington ont publié un énoncé qu'il est impossible de démontrer dans l'arithmétique de Peano du premier ordre et, comme le dit Girard, "l'incomplétude est descendue sur terre."

    Un indécidable dans un système est un énoncé qui ne peut être ni prouvé ni réfuté dans ce système. Il n'est pas forcément remarquable, comme par exemple le cinquième postulat d'Euclide. Ici, l'indécidabilité provient de la pauvreté du système initial. Dans d'autres cas, un système semble intuitivement suffisant pour formaliser un domaine où, malgré tout, certains énoncés restent indécidables (ex en théorie des ensembles). On est alors conduit à admettre que dans ce domaine, l'intuition reste insuffisante pour fixer la valeur de vérité des énoncés. Le cas le plus étonnant est celui des énoncés vrais dans le domaine mais non démontrables, comme les indécidables de Gödel pour l'arithmétique. 


              b) Les indécidables de la théorie des ensembles.

    L'hypothèse du continu (HC) est un indécidable: N1= 2 puissance N0, ce qui signifie "il n'existe aucun infini compris strictement entre l'infini des nombres entiers et celui des nombres réels." Cantor ne réussit jamais à démontrer cet indécidable dans la théorie des ensembles ZF (de Zermelo-Franklel). Gödel a montré en 1938 que la théorie obtenue en ajoutant HC à ZF est consistante si ZF l'est, puis Cohen a montré en 1966 qu'il en est de même si on ajoute la négation de HC à ZF. Il en est de même pour l'axiome de choix AC qui stipule qu'étant donné une famille d'ensembles, on peut former un nouvel ensemble qui contient exactement un élément de chaque ensemble de la famille. Ce qui signifie que les axiomes de ZF qui à priori semblent suffisants pour caractériser notre concept intuitif d'ensemble ne le sont pas vraiment.

    Il pourrait sembler simple d'y remédier en en s'interrogeant s'ils sont vrais ou faux tels que nous les concevons puis en rajoutant l'énoncé ou sa négation comme axiome supplémentaire. Pour HC cependant il est très difficile d'avoir une intuition directe convaincante de sa vérité ou de sa fausseté. Aucun mathématicien n'a pu exhiber une bonne raison de penser que HC doive être vraie (ou fausse) sur les ensembles qui sont ceux "que nous avons en tête".Cela paraît plus simple pour l'axiome de choix. Il semblerait en effet qu'il énonce une extension aux ensembles infinis d'une propriété parfaitement exacte pour les ensembles finis. Donc pourquoi ne pas l'admettre comme axiome supplémentaire sans se poser de questions? Mais, et Zermelo l'a fait en 1904, on peut montrer qu'il est équivalent à l'énoncé suivant: "Tour ensemble peut être bien ordonné" (quand on peut le munir d'une relation d'ordre tel que tout sous-ensemble non vide possède un plus petit élément. Et sous cette forme il implique que l'ensemble R (les réels) peut être bien ordonné alors qu'intuitivement on pense le contraire. Actuellement, l'hypothèse du continu AC est acceptée par la majorité des mathématiciens. 

    Tout ceci montre la difficulté qu'il y a à enfermer dans un système d'axiomes toutes les caractéristiques d'une conception intuitive. C'est un aspect majeur du débat entre mathématiciens réalistes et ceux qui ne la sont pas. Pour les réalistes, HC est vraie ou fausse en ce qui concerne les vrais ensembles et nous finirons par découvrir ce qu'il en est. Alors, on ajoutera HC (ou sa négation) à ZF aux axiomes de ZF, ce qui permettra de d'obtenir un système décrivant mieux les "vrais ensembles" que ZF seul. Pour les non-réalistes, il n'y a pas de vrais ensembles. Les objets mathématiques ne sont que des constructions mentales et l'indécidabilité n'est que le symptôme du fait que nos intuitions ne suffisent pas à caractériser pleinement les ensembles infinis. Pour eux, il n'y a que deux types d'ensembles, ceux qui satisfont HC et ceux qui ne la satisfont pas. Il en est de même pour les grands cardinaux . Les accepter ou non est une matière d'appréciation personnelle. Mais l'itération à l'infini sur les grand cardinaux par exemple, revient à s'éloigner de plus en plus de l'intuition immédiate, et on a prouvé que certains de ces axiomes sont contradictoires. 


              c) Les indécidables de Paris et Harrington (1977).

    C'est la découverte d'une question simple et intéressante, ne dépendant pas d'un codage numérique de notions logiques, et qui est indécidable (ce qui montre à quel point les logiciens ont considéré comme important le fait d'exhiber un énoncé indécidable d'arithmétique ne dépendant pas directement d'une construction ad hoc). Cette découverte est le théorème de Ramsey fini. L'énoncé en est  complexe, mais il est explicite contrairement à la formule de Gödel, qu'il serait effroyablement long et fastidieux d'expliciter. C'est une variante de ce théorème qui a été démontrée en 1928, en dehors de toute considération logique. Paris et Harrington en ont prouvé l'indécidabilité dans l'arithmétique de Peano du premier ordre. D'autres énoncés du même type, comme la forme finie du théorème de Kruskal et Friedman ont été publiés. Ils sont un premier pas vers des énoncés indécidables issus directement de l'arithmétique, mais ils sont suffisamment marginaux pour que de nombreux mathématiciens considèrent toujours que les indécidables n'interviennent pas dans l'arithmétique courante. Si le grand théorème de Fermat a été démontré en 1993, il reste toujours la procédure de Goldbach non démontrée...


              d) Les équations diophantiennes.

    C'est l'objet du dixième parmi les 23 problèmes irrésolus que Hilbert a énoncés au congrès international des mathématiciens de 1900. Une équation diophantienne est une équation de la forme P(x1, x2,... xn = 0) où P est un polynôme à coefficients entiers. Par exemple, 3x puiss 4 + 8 y puiss 7 + 5 z puiss 9 - 8 = 0 est une équation diophantienne dont x =1, y = 0 z= 1 est solution. Hilbert demandait que soit trouvé un algorithme permettent de décider pour toute équation de ce type si elle avait des solutions entières ou pas. Matijasevic a démontré en 1970 qu'un tel algorithme n'existait pas. Ici, il ne s'agit pas d'un énoncé, mais d'un problème indécidable: il n'existe aucun algorithme permettant de le résoudre en général. D'autre part, il existe des équations simples (qui s'écrivent sous forme de polynômes) dont sait à la fois qu'elles n'ont pas de solution et qu'il est imposssible de le démontrer dans le système dans lequel elles ont été formulées. 

     

              e) Les indécidables de l'informatique et de la théorie algorithmique de                                 l'information.     


    Un ordinateur fonctionne en exécutant des programmes. On attend qu'il fournisse un résultat et qu'il s'arrête au bout d'un moment (si possible pas trop long?). Dans des cas simples, on sait que l'ordinateur fonctionnera sans s'arrêter jusqu'à la fin des temps, par exemple si le programme contient la boucle infinie suivante: "Instruction 1: a = 10. Instruction 2: tant que a > 0 faire a = a + 1". Il serait très utile de posséder une méthode générale permettant de savoir pour tout programme s'il s'arrêtera ou pas. Il est possible de montrer qu'une telle méthode n'existe pas (ni aucun algorithme, ni aucun programme). Ce problème, dénommé "problème de l'arrêt" a été prouvé indécidable par Turing en 1936, au même sens que la résolution des équations diophantiennes). 

    La théorie algorithmique de l'information a été élaborée par KolmogorovRay Solomonov et Chaitin dans les années 1960. Son objet est l'étude de la complexité des objets finis comme les suites de nombres. La complexité algorithmique d'un objet est la longueur du plus petit programme informatique capable de l'engendrerEtant donné s, une suite finie de 0 et de 1, on note K(s) sa complexité. On peut alors montrer que dans tout système formel S, il n'est possible de prouver qu'un nombre fini d'énoncés du type "K(s) = n". En d'autres termes, quelque soit le type de système formel dans lequel on se place, tous les énoncés de ce type, sauf un nombre fini, sont indécidables. Ce résultat extrêmement surprenant signifie que dans presque tous les cas, on ne peut prouver que la complexité d'uns suite donnée est égale à une certaine valeur.

    Autre exemple d'indécidabilité: le nombre OMEGA de Chaitin. Ce nombre est défini comme la probabilité pour qu'un ordinateur à qui on fait exécuter un programme tiré au hasard  finisse par s'arrêter. Ce nombre a des propriétés étranges. On peut montrer que la connaissance de ses mille premiers digits permettrait de résoudre la plupart des conjectures mathématiques. Malheureusement, il est aléatoire et incompressible, ce qui signifie qu'aucun algorithme ne peut permettre de calculer un par un ses digits. Ce nombre a des propriétés étranges. On peut montrer que la connaissance de ses mille premiers digits permettrait de résoudre la plupart des conjectures mathématiques. Malheureusement, il est aléatoire et incompressible, ce qui signifie qu'aucun algorithme ne peut permettre de calculer un par un ses digits. On peut même montrer qu'aucun système formel ne permet d'en calculer plus qu'un nombre fini. Tous les énoncés du type "la nième décimale de OMEGA vaut 1 sont indécidables à partir d'un certain rang. 


    3) Conclusion.

    La position confortable consistant à croire que les mathématiques permettent de prouver toutes les assertions vraies, que les méthodes de raisonnement utilisées sont incontestables et qu'il est possible de prouver qu'elles le sont doit être rejetée. De plus, comme le dit Hourya Sinacoeur: "S'il est relativement aisé de reconnaître la validité d'un résultat à partir d'hypothèses admises, il l'est beaucoup moins de se mettre d'accord sur les hypothèses que l'on peut ou doit admettre." Selon l'opinion philosophique qu'on adopte (réalisme, idéalisme, constructivisme, formalisme, intuitionnisme), on adoptera ou on refusera certains objets mathématiques et certaines méthodes de démonstration. Ce qui importe, c'est qu'on doit abandonner la tentation fondationnaliste d'évacuer toute incertitude en logique et en mathématiques, comme elle l'a été dans les sciences empiriques.

    Les premières incertitudes sont de type philosophique et sont la manifestation de différences de position métaphysique. Croire que les objets mathématiques ont une existence réelle (bien que de nature différente), que les arbres ou les tables, est une croyance qui se situe à un niveau tellement fondamental que les adversaires (qui croient que ce ne sont que des constructions humaines) ne peuvent être convaincus, et réciproquement. De la même manière, accepter les ontologies de plus en plus engagées et donc risquées (ne croire qu'au fini, à l'infini actuel dénombrable, puis croire en l'existence de grands cardinaux de plus en plus grands), est matière de conviction personnelle fonction d'arguments favorables ou défavorables. Ce qu'il faut en retenir, c'est que les mathématiques ne peuvent trancher définitivement (du moins pour le moment) et il est peu probable que cette incertitude puisse être un jour éliminée définitivement.

    Les deuxièmes sont des incertitudes techniques, sur lesquelles tous les mathématiciens sont d'accord. Situées à l'intérieur de cadres précis, elles signifient qu'il n'existe pas de cadre englobant la totalité des mathématiques dans lequel il est possible de prouver de manière certaine toute vérité. D'autre part, pour montrer la consistance, on est obligé d'avoir recours à des méthodes qui sortent de ce cadre et qui sont hors du champ de consistance qu'elles ont concouru à prouver. On est ainsi obligé de nouveau de sortir du cadre et ainsi à l'infini. De plus, dans tout cadre suffisamment puissant, il existe des vérités qu'on ne peut prouver formellement.  


    Il y a donc deux niveaux d'incertitude. Le premier, de nature philosophique est celui qui concerne le cadre qu'il convient d'adopter (la débat est toujours ouvert et n'est pas prêt d'être clos). Le second est celui qui subsiste à l'intérieur de tout cadre et sur lequel les mathématiciens sont tous d'accord. Comme le dit Ladrière: "le formalisme ne peut recouvrir adéquatement le contenu de l'intuition et, en ce sens, l'idée d'une formalisation totale doit être considérée comme irréalisable."

    On ne doit cependant pas en retirer l'impression que que ces incertitudes permettent d'accepter n'importe quel point de vue. Elle sont une preuve éclatante de l'efficacité du raisonnement scientifique. On doit éliminer le conceptions intuitives naïves qu'on pourrait avoir à priori et certaines idées séduisantes qui ne sont pas cohérentes. Cela permet de délimiter les contours de ce qu'il est possible de penser, croire ou construire. L'univers du discours est beaucoup complexe que ce que l'intuition nous laisse croire et nous en apercevons les limites. On a évoque le paradoxe selon lequel le raisonnement scientifique est capable de cerner ses propres limites. Mais il n'est qu'apparent: une méthode peut être utilisée pour montrer qu'elle n'est pas utilisable dans un domaine. Il suffit de l'appliquer de toutes manières possibles et de constater qu'elle n'aboutit pas au résultat recherché. Bien que négatif, ce résultat doit être compris comme uns connaissance supplémentaire et non comme échec de la raison. C'es là le sens de ces limites en mathématique et en logique.


    Pin It

    votre commentaire
  •  

    Le programme de Hilbert et les indécidables.

     

     

     Le programme finitiste de Hilbert.

    L'idée de Hilbert est d'enfermer la totalité des mathématiques dans un système formel finitiste. On considère (bien qu'il n'ait pas été totalement explicite) qu'il se limitait, outre les constructions finies, aux propriétés décidables universellement quantifiées (les formules Vx P(x)) où P est un prédicat décidable) et qu'il est possible de démontrer à l'aide du principe d'induction. Un système peut comporter un nombre infini d'axiomes, pourvu qu'il soit possible de déterminer par simple observation si une formule est un axiome ou non. Le système doit être complet et consistant. Il doit être possible de prouver la consistance par des moyens finitistes. 


     

     

    Ces espoirs ont été ruinés par les théorèmes de Gödel les "indécidables" que nous verrons dans le prochain message.


     

     

     

    "Est-il possible de raisonner sur des objets qui ne peuvent être définis en un nombre fini de mots? [...]Quant à moi, je n'hésite pas à répondre que ce sont de purs néants. Poincaré (1919).

    "Du paradis créé pour nos par Cantor, nul ne doit pouvoir nous chasser."                     Hilbert (1926). 

    Blog images des mathématiques: la vérité et les indécidables



    1) La certitude en mathématiques. 


    Les conclusions de l'article sur l'empirisme logique aboutissent à une vision du monde qui refuse au savoir toute certitude assurée et qui remet en cause le statut même de la réalité extérieure; la science n'est que le discours le plus simple et le plus commode en adéquation avec nos expériences; Les objets physiques ne sont que des entités intermédiaires que nous postulons pour que nos lois soient les plus simples possibles, mais rien ne nous garantit que leur existence est plus réelle que celle des dieux de l'antiquité. 

    Il est possible de considérer que cela est dû au fait que les sciences empiriques traitent du monde extérieur, que celui-ci nous résiste et que l'absence d'assurance vient de ce que notre cerveau n'est pas assez puissant pour comprendre pleinement le monde qui nous entoure. 

    Les Mathématiques semblent par contre un domaine où il semble que notre exigence de certitude soit parfaitement satisfaite, car le raisonnement mathématique symbolise par excellence la rigueur et la sûreté. Les mathématiques et la logique sont considérées comme des sciences dont la sûreté et la fiabilité ne sauraient être mises en doute. 

    Jamais, avant le début du 20e siècle, les mathématiciens et les logiciens n'ont rencontré de contradictions qu'ils n'aient éliminé après avoir construit un raisonnement correct. 

    Cette foi est particulièrement exprimée par David Hilbertt: "Qu'en serait-il de la vérité de notre connaissance, des progrès de la science si la mathématique ne donnait pas de vérité sûre? [...] La théorie de la démonstration renforce la conviction de l'absence de toute limite à à la compréhension mathématique [...]. 

    C'est ainsi qu'il propose son célèbre programme où lors d'une conférence , il s'exprime ainsi: "Je voudrais réduire tout énoncé mathématique à la présentation concrète d'une formule  obtenue rigoureusement et donner ainsi aux notions et déductions mathématiques une forme irréfutable montrant bien l'ensemble de la science. Je pense pouvoir atteindre ce but avec ma théorie de la démonstration." Ce programme est un réaction à l'orage des antinomies qui avait éclaté en théorie des ensembles construite par georg Cantor et qui se matérialisait par la découverte de contradictions internes dans ses concepts et dans la logique elle-même.Elles aboutissaient à des paradoxes graves que les mathématiciens ne purent éliminer qu'après une refonte de la théorie des ensembles et une remise en cause du rôle de l'intuition en mathématiques. La formalisation, plus poussée, permit de montrer qu'il existe des limites à la puissance de démonstration en mathématiques. Le résultat le plus connu est dû à Gödel: 

    a) Quelque soit le système formel grâce auquel on axiomatise l'arithmétique, il existe toujours des propositions vraies mais indécidables (limite au formalisme et différence entre entre ce qui est vrai et ce qu'on peut démontrer).

    b) La consistance (non contradiction) de tout système formel décrivant l'arithmétique est elle-même une proposition indécidable de ce système. Il est donc impossible de prouver que l'arithmétique n'est pas contradictoire en s'appuyant seulement le formalisme qui décrit l'arithmétique (sauf si l'arithmétique est incohérente).

    Le problème des indécidables est tel qu'en mathématiques ou en logique, il est impossible d'être assuré qu'on ne démontrera jamais une contradiction (problème de la consistance) ou que ce qui est vrai est démontrable (problème de la complétude). 


    2) Les difficultés des anciennes théories.


    Une grande part des difficultés est issue du concept d'infini actuel, c'est à dire de l'infini considéré comme un tout achevé et non comme une simple potentialité. Le recours à l'intuition est trompeur. Il a fallu bâtir progressivement des formalismes y faisant appel le moins possible et reposant sur des mécanismes ne pouvant raisonnablement mis en doute. Cette démarche a conduit au début du 20e siècle à une révolution conceptuelle majeure et abouti à la construction de la logique moderne. Ce qui suit permet de mieux comprendre les motivations qui ont conduit les mathématiciens à élaborer des systèmes de plus en plus sophistiqués et des théories dans lesquelles ils pouvaient placer leur confiance.


              2-1) La géométrie euclidienne

    Longtemps, elle a été considérée comme un modèle de rigueur mathématique. Mais elle fait largement appel à l'intuition et utilise des figures pour les démonstrations. Elle n'est que la description mathématique de l'espace dans lequel nous vivons. Un grand nombre de propriétés sont évidentes sur les figures, mais ne sont explicitées nulle part dans le système d'axiomes (les propriété y vont de soi car elles sont vraies).Au départ, il y a 5 postulats mais le cinquième a un statut particulier (par un point hors d'une droite, il ne passe qu'une parallèle à cette droite). Euclide échoue pour le démontrer à partir des quatre autres et toutes les autres tentatives échouèrent aussi, y compris les tentatives de démonstration par l'absurde (on n'a pu démontrer qu'en ajoutant sa négation aux 4 autres postulats, le système obtenu était contradictoire). Cela implique que l'axiome des parallèles doit être considéré comme indépendant des 4 autres et qu'il est possible de construire un système apparemment cohérent en ajoutant cet axiome, ou bien sa négation aux autres axiomes. L'existence de géométries non-euclidiennes a montré que la géométrie ne peut prétendre faire reposer sa validité sur son adéquation avec le réel et que sa cohérence doit reposer sur sa structure logique. Le recours à l'intuition doit alors être éliminé dans la mesure du possible. Les efforts furent donc dirigés vers l'axiomatisation formelle de la théorie.


              2-2) L'axiomatisation de la géométrie par Hilbert.

    On aboutit ainsi aux géométries non-euclidiennes: K.F. GaussJ Bolyaï et N. Lobatchevski, puis B. Riemann au 19e siècle.  Les travaux de Felix. KleinE. Beltrami et H. Poincaré ont montré plus tard que les géométries euclidiennes et non-euclidiennes étaient solidaires, elles sont toutes consistantes (non contradictoires), ou bien aucune ne l'est. En 1822, Pasch tente la première axiomatisation rigoureuse de la géométrie, amis il est resté attaché à une conception selon laquelle les axiomes sont suggérés par l'observation du monde extérieur. 

    C'est Hilbert qui résout totalement le problème en 1899. Il construit un système formel dans lequel il explicite tous les axiomes utilisés pour les démonstrations et les répartit en 5 groupes.

    1) La géométrie projective axiomes qui traitent des liaisons entre le point, la droite et le plan). 

    2) Ce groupe, de nature topologique, traite de la relation "être entre". 

    3) Ce groupe contient les axiomes d'égalité géométrique.

    4) Ce groupe est limité à un seul axiome: celui des parallèles.

    5) Ce groupe concerne les axiomes de continuité dont l'axiome d'Archimède: en ajoutant sur une droite un segment plusieurs fois à lui-même à partir d'un point A, on finira par dépasser tout point B situé du même côté de cette droite. 

    Liaison de axiomes? Un  axiome est indépendant des autres si le système obtenu en ajoutant sa négation aux autres n'est pas contradictoire. cela conduit à construire des géométries nouvelles (non-euclidiennes) et des géométries non-archimédiennes, qui prouvent à la fois l'indépendance de l'axiome des parallèles et de l'axiome d'Archimède. Hilbert ramène aussi le problème de la consistance de la géométrie à celui de la consistance des théories antérieures qu'il utilise. On ne peut partir de zéro et l'axiomatisation de la géométrie suppose données la logique et l'arithmétique sans lesquelles il est impossible de construire un raisonnement déductif ou d'énoncer une proposition géométrique. Sa démonstration de la consistance se situe donc à l'intérieur d'un cadre dont il suppose la consistance ("consistance relative"). On sait maintenant que c'est la théorie des ensembles de Zermelo-Fraenkel (théorie "ZF"). Mais on revient ici à la théorie de la confiance (voir l'empirisme logique) et une démonstration rigoureuse de la théorie reste à trouver.


               2-3) La nécessité de la formalisation. 

    La formalisation de Hilbert n'est pas encore totalement dégagée des images intuitives liées au sens concret des termes (ex: figures pour illustrer le texte) avec le risque que s'introduise subrepticement un maillon d'une propriété évidente mais non explicitée dans les axiomes. Ainsi, les mathématiciens ont cherché à supprimer tout recours à des noms pouvant évoquer un sens concret et en utilisant exclusivement une forme symbolique. Les axiomes deviennent les règles régissant les relations entre symboles. Par exemple: les droites sont des lettres majuscules, les points des minuscules. l'intersection de 2 droites sera le symbole intersection (^); la phrase "deux droites se coupent en un point c" deviendra "A^B = c". 

    Ainsi formalisé, le système obtenu peut représenter d'autres modèles, par exemple, les axiomes de la géométrie projective peuvent être interprétés en en permutant les termes de droite et de plan et les mêmes axiomes restent valables. Russel a pu dire: "la mathématique est une science où on ne sait jamais de quoi on parle ni si ce qu'on dit est vrai". 


               2-4) La théorie des ensembles de Cantor.

    La théorie des ensembles a été construite durant le dernier quart du 19e siècle par Georg Cantor. Son apport décisif concerne les ensembles infinis. L'utilisation sans précaution de ce concept a conduit à de nombreux paradoxes dont l'un des plus célèbres est celui de Zénon d'Elée. Au 19e siècle, l'infini avait acquit moins de un statut moins problématique l'analyse y devenait plus efficace dans l'étude des limites de suites et la convergence des séries (travaux de Bernard BolzanoCauchy et surtout Weierstrass). Cependant, devait-il être considéré en tant que potentialité (possibilité de rajouter toujours de nouveaux objets), ou comme actualité (collection d'une infinité d'objets existant simultanément à un moment donné)? Dedekind, avait adopté comme définition des ensembles infinis une propriété mise en avant par Bolzano: un ensemble infini peut être mis en correspondance biunivoque avec un des sous ensembles propres (par exemple, l'ensemble des nombres entiers avec l'ensembles des nombre pairs qui y est pourtant strictement inclus). Mais cela ne règle pas le problème de l'infini actuel, car cette possibilité n'assure nullement la légitimité de considérer l'ensemble des entiers naturels comme un tout achevé, comme une donnée actuelle et la situation est pire pour l'ensemble des nombres réels sans lequel l'analyse mathématique s'effondrerait. 

    La théorie de Cantor jette les nouvelle bases des ensembles infinis.  La définition est intuitive: "par ensemble, j'entends toute collection, dans un tout M, d'objets définis et distincts de notre intuition ou de notre pensée". Le mot collection comporte un aspect circulaire, mais cela n'est pas grave si les règles d'utilisation des concepts sont non ambiguës puisque la définition ne joue dans ce cas aucun rôle opérationnel. L'impossibilité de définir précisément ce qu'on entend par "ensemble" ou "élément" n'empêche pas de construire une théorie qui en retour éclairera ce que sont les ensembles et les éléments, exactement, selon Boolos comme pour des termes comme "il existe" ou "non" dans la logique quantifiée. 

    Une propriété (être "rouge", être un "nombre pair"...)  est caractérisée par un prédicat. Il existe un ensemble qui est celui des objets satisfaisant cette propriété. Deux ensembles ont même puissance s'il est possible de les mettre en correspondance biunivoque. Ainsi l'ensembles des nombres entiers (N) et des nombres pairs (ou des couples, des triplets, des nombres rationnels....) ont même puissance (équipotents). Un ensemble équipotent à N est dit "dénombrable". Cette puissance set désignée par un nombre cardinal (le nombre d'éléments de l'ensemble s'il est fini). Le cardinal de N et de tous les ensembles dénombrables est appelé No. Cantor va encore plus loin: la puissance des parties d'un ensemble (ensemble de tous ses sous-ensembles)  est strictement > à celle de l'ensemble lui-même. Pour les ensembles finis, c'est évident, P(A) a 2(puissN) éléments => Card P(A) = 2 (puissCardA). Cantor généralise aux ensembles infinis avec Card P(A) = 2(puissCard(A) > Card A. Ainsi, il existe des ensembles de puissances croissantes supérieures au dénombrable (on les appelle N1, N2 ...). Pour les réels, Cantor montre qu'il est impossible de construire une correspondance biunivoque entre N et l'ensemble des réels R, donc N et R n'ont pas même puissance et, comme N est inclus dans R, on a puissance R > N. Cette puissance est appelée "puissance du continu". On peut aussi montrer que R peut être mis en correspondance avec un des ses segments ou avec R puiss2 (ou RpuissN). Il est possible de montrer que la puissance du continu est identique à celle de l'ensemble des parties de N, ce qui veut dire que Card R est 2puissN0 qu'on appelle N1. Y a-t-il une puissance entre N0 et N1, entre celle du dénombrable et celle du continu? Cantor a répondu non (c'est l'hypothèse du continu), mais il ne l'a jamais démontré. Depuis, Godël et Paul Cohen ont montré qu'elle est indécidable (on ne peut  ni la démontrer ni la réfuter).


              2-5) Les antinomies de la théorie des ensembles.

    La théorie de Cantor représente un immense pas en avant dans la compréhensions de l'infini après la solution des problèmes de l'infiniment petit (Weierstrass), de l'infini et de la continuité (Dedekind), solution que Cantor accomplit définitivement. Mais cette théorie, dite "théorie naïve des ensembles" est contradictoire. Elle engendre des des incohérences inacceptables, malgré son aspect intuitif apparemment satisfaisant. Le plus connu est le paradoxe de Russel concernant les ensembles qui ne sont pas éléments d'eux-même. Soie E l'ensemble des choses pensables. Etant une chose pensable, il fait partie de lui-même. Par contre l'ensemble des lettres du mot "théorie" est l'ensemble {t, h, é, o, r, i, e}. Cet ensemble n'est pas une lettre du mot "théorie", il n'est donc pas élément de lui-même. Considérons alors l'ensemble A des ensembles qui ne sont pas éléments d'eux-mêmes. A est-il élément de lui-même? Répondre non, c'est dire que A possède la propriété qui définit des propres éléments (il n'est pas élément de lui-même) et  donc il appartient à A . Répondre oui, c'est dire qu'en temps qu'élément de A, il doit posséder la propriété qui définit ces éléments et donc il n'appartient pas à lui-même. Cela conduit dans les 2 cas à une contradiction. De multiples autres paradoxes sont ainsi apparus, tel celui du menteur qui dit "je mens" ou celui de Burali-Forti concernant l'ensemble de tous les ordinaux.


            2-6)   La logique de Frege et de Russel et Whitehead.

    Sans changement notable depuis Aristote, entamé avec De Morgan, le renouveau date vraiment de 1847 avec "de l'Analyse mathématique et de la logique" puis des "lois de la pensée" de Boole  sous forme d'une algèbre permettent d'élargir et de faciliter les types possibles de déduction. Mais c'est Frege qui est considéré comme le père de la logique moderne. Son "Begriffs-Schrift" est le début de la formalisation de la logique où il introduit les prédicats et les quantificateurs et un système formel indépendant de toute interprétation. Son objectif, dans le cadre du logicisme, est de montrer que l'ensemble des mathématiques est réductible à la logique. Mais en 1902, il découvre les paradoxes de Russel, et poursuivant dans voies du logicisme, il publie les Principia Mathématica avec Whitehead. Ils fournissent l'essentiel des mathématiques de l'époque et le système formel qui contient la théorie des ensembles sous une forme appelée "la théorie des types", échappant aux paradoxes. C'est dans ce formalisme que Godël fera la démonstration de ses théorèmes d'incomplétude. De son côté, Zermelo proposa en 1908 une axiomatique de la théorie des ensembles, complétée et améliorée par Fraenkel et Skolem, appelée "théorie ZF". 


    3) Les systèmes formels modernes.


    L'exigence des mathématiciens de ne as tomber dans la contradiction a engendré des découvertes surprenantes et contre-intuitives dont certaines se manifestent sous la forme de théorèmes limitation dans les systèmes formels. 


              a) Les méthodes finitistes.

     Si on veut utiliser un systèmes d'axiomes pour en tirer des conséquences, il est essentiel de savoir s'il est cohérent (ou consistant, non-contradictoire). S'il est possible de trouver un modèle (un ensemble d'objets tels que les axiomes sont vrais pour eux) alors il semble que qu'on sera assuré que les axiomes seront cohérents. Si une propriété est la conséquences de propriétés vérifiées, alors il n'est pas possible de croire que la propriété conséquence n'est pas vérifiée elle aussi ("le réel doit être logique"). Le modèle est non contradictoire et toute propriété le concernant satisfait le principe du tiers-exclu, est soit vraie, soit fausse. Voir le modèle du triangle page 62 de "les limites de la connaissance)

    Ces raisons semblent indubitables, mais elles reposent sur le fait que le modèle est simple et évident pour qu'on puisse décider par simple observation de sa valeur de vérité (on dit qu'il est utilisable). Il est constitué d'objets bien définis en nombre fini qui permet les vérifications en nombre fini. Cela revient à faire confiance à notre intuition du fini. En progressant vers la généralisation, on trouve des systèmes ayant un nombre fini d'axiomes et un modèle infini, puis un nombre infini d'axiomes et des modèles infinis. Or, les mathématiques concernent en général des collections infinies d'objets et nous ne pouvons pas les inspecter un par un, et on a bien vu que pour des ensembles intuitifs, au sens initial de Cantor, l'existence même d'un de ces objets pouvait conduire à une contradiction. Comment alors aller au-delà de notre intuition finie sans tomber dans le piège de l'infini?

    On appelle "décidable" un propriété dont on peut s'assurer directement (par observation au sens précédent), qu'elle est vraie ou fausse, par exemple la propriété: être pair. Une généralisation pour généraliser, on peut étendre l'examen des propriétés sur des ensembles infinis dénombrables. Pour chacun des éléments de l'ensemble, il est possible de savoir par observation s'il vérifie P ou non, puisque P est décidable. Par contre, on ne peut vérifier que tout élément de l'ensemble vérifie P, il en faudrait un nombre infini. Par contre, on peut accepter le principe "d'induction": si la propriété P est vérifiée par 0 et si, lorsqu'elle est vérifiée par un nombre entier, elle est vérifiée par le nombre entier suivant, alors elle est vérifiée par tout nombre entier. Ce principe ne peut être établi par observation, mais sa validité semble suffisamment raisonnable. Il devient alors possible de s'assurer que qu'une propriété est décidable est vérifiée sur un ensemble infini (dénombrable). Mais en fait, c'est loin d'être suffisant pour s'assurer de la vérité ou de la fausseté de toute propriété de N où de nombreuses propriétés ne s'expriment pas sous cette forme. 


              b) Un système formel rudimentaire: le système "a,b,c,d"

    Pour composer un système formel, on se donne un vocabulaire ou alphabet A qui regroupe les symboles utilisés dans le système. Toute "suite finie de symboles" est une expression. On se donne ensuite des règles qui permettent de construire des "expressions bien formées" (e,b,f) appelées des 'formules" (des suites de symboles). Cette partie du système formel est appelée "morphologie" car elle spécifie la forme que prendront les objets formels du système. On se donne ensuite des règles pour pour construire des preuves (des suites de formules conformes à ces règles). Les axiomes du système sont choisis parmi les formules (ce sont en eux-même des preuves, donc ils sont prouvés dans le système). Il est à noter que les règles de formulation des formules ou des preuves peuvent être exprimées, elles,  dans le langage ordinaire ou un langage qui préexiste à celui du système formel. Ce dernier est appelé un "métalangage".On a alors construit l'aspect syntaxique du système, aspect entièrement formel, qui ne concerne que la forme des objets qu'il est licite construire. 

    Par exemple, Le système "a,b,c,d" est formé à partir de l'alphabet A = {a;b;c;d}. "acba" et "acbdb"sont des expressions. Soit la règle suivante: On appelle "composante" toute expression qui est soit réduite à un unique symbole a ou b, soit de forme fc@ où f est une composante et @ peut être a ou b.  Une formule est alors toute expression e la forme fdg où f et g sont des composantes. 

    Cette règle définit donc des formules comme étant des expressions avec un nombre arbitraire mais fini de a et b liés ou non par des c et d'autre part de l'unique signe d (acab n'est par une formule alors que acbda l'est). 

    On se donne aussi la règle suivante de construction des preuves: une preuve est une suite de formules  vérifiant les propriétés: 1) ou bien elle est réduite à un axiome. 2) ou bien elle commence par un axiome, et la formule n°i s'obtient à partir de la formule n°( i-1)en remplaçant dans cette dernière une occurrence de a par aca, ou bca, ou en remplaçant dans cette dernière une occurrence de b par bcb.  

    On peut ainsi prouver des formules ou voir que d'autres formules n'ont pas de preuve. Jusqu'ici il n' a été attribué de signification aucun des symboles et les règles du jeu concernent exclusivement la forme des suites de symboles ("formules", "axiomes", "preuves"). Cette syntaxe peut être comparée aux règles de déplacement du jeu d'échecs qui n'ont en elles-même aucune signification, il faut la compléter par une sémantique: on appelle "modèle" du système formel une structure d'interprétation dans laquelle les axiomes sont vrais: cette interprétation permet de saisir intuitivement " parle le système".

    Dans le système présenté, le domaine d'interprétation sera l'ensemble {0,1,x,=}. La formule "acbda" sera interprétée comme signifiant " 0x1=0. Une formule sera une égalité entre deux produits d'un nombre arbitraire de 0 et de 1. Les axiomes interprétés deviennent: 0=0, 1=1... {0,1,x,=] est un modèle du système formel.  Les preuves permettent de prouver toutes les égalités vraies (comme 1x0x1x0=0x1), car aucune égalité fausse (comme 0x0x1x=1x1) ne peut être prouvée. Il y a donc équivalence pour une formule entre "être prouvée" et "être vraie dans le modèle". Remarques: On voit ainsi pourquoi "acab" (0x01) n'est pas une formule, alors que "acbda" (0x1=0) en est une. Un système formel qui possède la propriété d'être prouvable est dit "correct" (ou fiable) et "complet". Comme il n'est pas possible de prouver une formule fausse, il est dit "consistant". Les démonstrations de la complétude et de la consistance du système ne font ici appel qu'à des raisonnements de type finitiste (avec le principe d'induction) portant sur la structure des preuves.


              b La logique des propositions (initiation).

    La logique est la discipline qui codifie les règles que nous utilisons pour nous exprimer. Le système le plus simple est celui qui codifie le calcul propositionnel, raisonnements les plus simples qui portent sur des propositions non analysées en constituants (ex: "Si je chante alors il pleuvra, or je chante, donc il pleuvra"...). Un système formel correspondant est le suivant:

    On se donne un ensemble infini de variables propositionnelles P = [p,q...t]. Le vocabulaire V se compose de P et de deux symboles connecteurs {--, -->}, la "négation" et "l'implication". Les règles de formation des formules, suites finies de symboles de V sont les suivantes:

    - Toute suite de variables ayant pour seul terme une variable propositionnelle est une formule.

    - Si F est une formule, le terme --, suivi des termes de la formule, est une formule (notée --, F).

    - Si F et G sont deux formules, la suite obtenue en faisant suivre les termes de F par --> puis par les termes de g est une formule notée (F --> G) .

    - Toute formule est obtenue par itération des procédés ci-dessus

     Les axiomes sont les formules suivantes: 1). A --> (B--> A).  

    2). {A--> (B--> C)} --> {(A --> B) --> (A--> C)}  3). (--, A --> B) --> {(--, A --> --, B) --> A}

    Il y a une infinité d'axiomes puisque A, B, C peuvent être n'importe quelle formule. 

    Les règles de formation des preuves sont les suivantes:

    - Toute suite de formules ayant un axiome pour seul terme est une preuve.

    - Si D est une preuve et A un axiome, le suite obtenue en faisant suivre D par A est une preuve. 

    - Si D est une preuve comprenant deux termes de la forme A et  (A --> B), le suite obtenue en faisant suivre D par B est une preuve. Cette règle s'appelle le "modus ponens".

    Une formule est prouvable et s'appelle un "théorème" s'il existe une preuve dont elle est le dernier terme.

    Ces règles constituent la syntaxe du calcul des propositions (on constate l'analogie avec du système " abcd ").  

    Pour la sémantique, on pourrait rechercher une structure d'interprétation en donnant une signification aux deux symboles (--, et -->), comme  on l'a fait pour le système {a,b,c,d} ou pour l'arithmétique, mais ici, il s'agit de modéliser le raisonnement logique lui-même. Ce n'est pas le sens des propositions qui nous intéresse, mais la vérité des propositions. Les raisonnements doivent partir de prémisses vraies et aboutir à des conclusions vraies, indépendamment de leur sens. On définit une assignation de valeurs de vérité comme l'assignation à chaque variable propositionnelle de la valeur V (vrai) ou F (faux). Le domaine d'interprétation des variables propositionnelles sera donc l'ensemble {V,F} et les connecteurs seront associés à ce qu'on appelle leur table de vérité:

               p          q          --,p          --q           p-->q

               V          V           V             F             V

               V          F           F             V              F

                F         V           V              F             V

                F          F          V              V             V


    Un modèle particulier sera donc donné par une assignation particulière de valeur de vérité à chaque valeur de vérité dan {V,F} qui rende vrais les axiomes. Nous aurions modélisé un domaine particulier, correspondant à une assignation particulière, mais pas encore le raisonnement lui-même. Nous cherchons l'assurance que quelque soit la valeur de vérité des variables propositionnelles, le raisonnement permettant de déduire une formule d'une autre, le raisonnement sera licite et la conclusion aussi. Faisons un pas de plus, on s'intéresse aux propositions qui sont vraies pour toute assignation.de valeurs de vérité: on les appelle des "tautologies". Il est possible de montrer que si les règles de preuve sont telles que toute formule prouvée est une tautologie le système est correct),et que toute tautologie est démontrable (complétude), alors, pour chaque assignation particulière de valeurs de vérité, toute formule prouvée à partir de formules non tautologiques  sera vraie chaque fois que les formules seront vraies, et si une formule est vraie chaque fois que qu'un ensemble d'autres formules est vrai, alors la première sera prouvable à partir des secondes. On a ainsi formalisé ce que nous entendons par règles de raisonnement. 

    Le système que nous cherchons se donne donc pour objet de formaliser les règles qui permettent de prouver les tautologies qui en seront les axiomes. Le calcul propositionnel est donc correct et complet. Ce calcul des propositions est aussi consistant car il est impossible de prouver une proposition et sa négation (on aurait une formule tautologique dont la négation est tautologique, ce qui est impossible). 

    A côté des axiomes tautologiques, on peut maintenant se donner des axiomes complémentaires, qui sont des formules contingentes, vraies pour certaines assignations des valeurs de vérité et fausses pour d'autres ainsi qu'un modèle du système obtenu. On obtient ce qu'on appelle "une théorie" (d'ordre 0). On a ainsi bien réalisé une modélisation générale du raisonnement qui incorpore toute modélisation particulière. La consistance et la complétude du calcul des propositions ont pu être montrées d'une manière qui semble à l'abri de tout soupçon. Mais seules des méthodes finitistes qui ne suscitent aucun doute ont été employées.


              c) Le calcul des prédicats.

    Le calcul des propositions est trop rudimentaire pour suffire à exprimer des raisonnements mathématiques. On introduit le concept de prédicat pour formaliser le fait qu'une propriété est attribuée à un objet. Le fait d'être pair pour un entier revient à dire qu'il satisfait au prédicat "être pair". On note P(n) le fait que l'entier n vérifie le prédicat P. De plus, on introduit les deux quantificateurs "pour tout" (noté "V" et "il existe"  (noté "E"). Ainsi, l'énoncé "pour tout nombre pair n, il existe un nombre n tel que n est la somme de m avec lui-même" s'écrit: Vn, P(n) -->(Em, n=n+m). De même être le double s'écrit: D (m,n) est vérifié pour tout couple tel que m=2n. Le calcul des prédicats se formalise de la même manière (plus complexe) que le calcul des propositions. Il est correct et complet (toute formule dérivable à partie d'un ensemble de formules en est la conséquence logique, et si une formule est la conséquence logique d'un ensemble de formules, elle est dérivable à partir de cet ensemble et ce dernier est consistant. Le calcul des prédicats semble suffisant pour formaliser l'ensemble des mathématiques et les systèmes formels qui sont envisagés incorporent; outre les axiomes propres qui décrivent le domaine particulier envisagé (las nombres entiers, les ensembles...), le calcul des prédicats comme outil de raisonnement logique. Ces systèmes sont appelés "théories du premier ordre", le calcul des prédicats étant "le calcul du premier ordre". C'était la position de Hilbert. Depuis, Quine (1970) s'est opposé à cette logique, hintikka 1998) en propose une nouvelle avec Shapiro (1991) (logique du second ordre).


             d) Les propriétés des systèmes formels.

    Résumé: un système formel pour la logique des propositions ou le calcul des prédicats est dit "correct" ou "fiable" si toute formule prouvable est tautologique. Il est "complet" si si toute formule tautologique est prouvable. Une théorie est obtenue en en ajoutant aux axiomes de base un ensemble d'axiomes supplémentaires (formules contingentes qui peuvent être vraies ou fausses selon l'assignation). Une théorie est complète si toute formule est soit prouvable, soit réfutable. Par ailleurs, on distingue deux sens pour le mot "complétude". La complétude sémantique, signifie que toute formule, conséquence logique d'un ensemble de formules, est dérivable de cet ensemble. la complétude syntaxique signifie que toute formule est prouvable ou réfutable. Dans un système correct sémantiquement consistant, la complétude syntaxique entraîne la complétude sémantique. mais la réciproque est fausse: le calcul des prédicats est sémantiquement complet, mais pas syntaxiquement (la formule Ex P(x) --> Vx P(x) n'est ni démontrable ni réfutable). Quand on parle de complétude sans précision, il s'agit de la complétudes sémantique (l'arithmétique du premier ordre est dans ce cas, comme l'a montré Gödel).


              e) L'axiomatique de Peano (axiomatisation formalisée de l'arithmétique _1899).

    Le langage contient 4 symboles non logiques: le nom "0", la fonction à une variable "s" (successeur), les 2 fonctions à deux variables "+" et "-". L'arithmétique du premier ordre est la théorie obtenue en ajoutant au calcul des prédicats (avec identité; cad on s'est donné les axiomes régissant l'utilisation du prédicat binaire "=") les axiomes suivants:

    - Vx --, {0 = S(x)} (0 n'est le successeur d'aucun nombre).

    - Vx Vy {S(x) = S(y) --> (x= y)}. (si 2 nombres ont le même successeur, ils sont égaux).

    - V x (x=0 = x). (0 ajouté à un nombre ne change pas le nombre).

    - Vx Vy {x + S(y) = S(x+y)}. (x + le successeur de y est identique au successeur de x+y).

    - Vx (x . 0 =0). (0 multiplié par un nombre = 0).

    - Vx Vy (x . S(y) = x . y + x)). (x multiplié par le successeur de y = x multiplié par y plus x.

    - (phi (0) ^ {Vx phi(x) --> phi(S(x))} --> x(phi(x) où phi(x) est une formule. (le principe d'induction).

    L'ensemble N des entiers naturels muni de l'addition et de la multiplication est un modèle de ce système formel. Il en résulte que le système est consistant. Mais l'arithmétique possède un nombre infini d'éléments et il apparaît que des difficultés imprévues surgissent (voir le théorème de Gödel.


              f) le programme finitiste de Hilbert.

    L'idée de Hilbert est d'enfermer la totalité des mathématiques dans un système formel finitiste. On considère (bien qu'il n'ait pas été totalement explicite) qu'il se limitait, outre les constructions finies, aux propriétés décidables universellement quantifiées (les formules Vx P(x)) où P est un prédicat décidable) et qu'il est possible de démontrer à l'aide du principe d'induction. Un système peut comporter un nombre infini d'axiomes, pourvu qu'il soit possible de déterminer par simple observation si une formule est un axiome ou non. Le système doit être complet et consistant. Il doit être possible de prouver la consistance par des moyens finitistes. S'il est possible de projeter la preuve de sa consistance à l'intérieur du système, elle rejaillira de manière réflexive pour acquérir un statut de sûreté indubitable. Toute déduction mathématique se ramènerait à à une preuve formelle où on pourrait décider si elle est conforme ou pas sans ambiguïté. Mais il ne serait plus possible de débattre sur la légitimité des démonstrations pour une raison profonde. Tout énoncé vrai posséderait une démonstration et l'ignorabimus serait éliminé selon le voeu de Hilbert. Il ne rejette pas les résultats qui ne sont pas conformes à la méthode finitiste, mais il veut prouver que toute démonstration qui utilise ces méthodes ("abstraites" selon lui), peut être ramenée à un méthode finitiste. Ce programme est l'analogue du désir fondationnaliste des positivistes logiques et assez conforme à l'image que l'homme de la rue se fait des mathématiques.


    Ces espoirs ont été ruinés par les théorèmes de Gödel les "indécidables" que nous verrons dans le prochain message.



    Pin It

    votre commentaire


    Suivre le flux RSS des articles de cette rubrique
    Suivre le flux RSS des commentaires de cette rubrique